These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 29022704)
1. A Kinetic Model of Nonenzymatic RNA Polymerization by Cytidine-5'-phosphoro-2-aminoimidazolide. Walton T; Szostak JW Biochemistry; 2017 Oct; 56(43):5739-5747. PubMed ID: 29022704 [TBL] [Abstract][Full Text] [Related]
2. Template-Directed Catalysis of a Multistep Reaction Pathway for Nonenzymatic RNA Primer Extension. Walton T; Pazienza L; Szostak JW Biochemistry; 2019 Feb; 58(6):755-762. PubMed ID: 30566332 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of a Nonhydrolyzable Nucleotide Phosphoroimidazolide Analogue That Catalyzes Nonenzymatic RNA Primer Extension. Tam CP; Zhou L; Fahrenbach AC; Zhang W; Walton T; Szostak JW J Am Chem Soc; 2018 Jan; 140(2):783-792. PubMed ID: 29251930 [TBL] [Abstract][Full Text] [Related]
4. Crystallographic observation of nonenzymatic RNA primer extension. Zhang W; Walton T; Li L; Szostak JW Elife; 2018 May; 7():. PubMed ID: 29851379 [TBL] [Abstract][Full Text] [Related]
5. Kinetic explanations for the sequence biases observed in the nonenzymatic copying of RNA templates. Ding D; Zhou L; Giurgiu C; Szostak JW Nucleic Acids Res; 2022 Jan; 50(1):35-45. PubMed ID: 34893864 [TBL] [Abstract][Full Text] [Related]
6. Competition between bridged dinucleotides and activated mononucleotides determines the error frequency of nonenzymatic RNA primer extension. Duzdevich D; Carr CE; Ding D; Zhang SJ; Walton TS; Szostak JW Nucleic Acids Res; 2021 Apr; 49(7):3681-3691. PubMed ID: 33744957 [TBL] [Abstract][Full Text] [Related]
7. A Highly Reactive Imidazolium-Bridged Dinucleotide Intermediate in Nonenzymatic RNA Primer Extension. Walton T; Szostak JW J Am Chem Soc; 2016 Sep; 138(36):11996-2002. PubMed ID: 27552367 [TBL] [Abstract][Full Text] [Related]
8. Insight into the structures of unusual base pairs in RNA complexes containing a primer/template/adenosine ligand. Dantsu Y; Zhang Y; Zhang W RSC Chem Biol; 2023 Nov; 4(11):942-951. PubMed ID: 37920395 [TBL] [Abstract][Full Text] [Related]
9. Enhanced nonenzymatic RNA copying with in-situ activation of short oligonucleotides. Ding D; Zhang SJ; Szostak JW Nucleic Acids Res; 2023 Jul; 51(13):6528-6539. PubMed ID: 37247941 [TBL] [Abstract][Full Text] [Related]
10. Preparation of 2-Aminoimidazole-Activated Substrates for the Study of Nonenzymatic Genome Replication. Robinson JD; Sammons SR; O'Flaherty DK Curr Protoc; 2024 Aug; 4(8):e1119. PubMed ID: 39183585 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Nonenzymatic RNA Copying with 2-Aminoimidazole Activated Nucleotides. Li L; Prywes N; Tam CP; O'Flaherty DK; Lelyveld VS; Izgu EC; Pal A; Szostak JW J Am Chem Soc; 2017 Feb; 139(5):1810-1813. PubMed ID: 28117989 [TBL] [Abstract][Full Text] [Related]
12. The Mechanism of Nonenzymatic Template Copying with Imidazole-Activated Nucleotides. Walton T; Zhang W; Li L; Tam CP; Szostak JW Angew Chem Int Ed Engl; 2019 Aug; 58(32):10812-10819. PubMed ID: 30908802 [TBL] [Abstract][Full Text] [Related]
13. Template-Directed Nonenzymatic Primer Extension Using 2-Methylimidazole-Activated Morpholino Derivatives of Guanosine and Cytidine. Zhang W; Pal A; Ricardo A; Szostak JW J Am Chem Soc; 2019 Jul; 141(30):12159-12166. PubMed ID: 31298852 [TBL] [Abstract][Full Text] [Related]
14. Freeze-thaw cycles enable a prebiotically plausible and continuous pathway from nucleotide activation to nonenzymatic RNA copying. Zhang SJ; Duzdevich D; Ding D; Szostak JW Proc Natl Acad Sci U S A; 2022 Apr; 119(17):e2116429119. PubMed ID: 35446612 [TBL] [Abstract][Full Text] [Related]
15. Insight into the mechanism of nonenzymatic RNA primer extension from the structure of an RNA-GpppG complex. Zhang W; Tam CP; Walton T; Fahrenbach AC; Birrane G; Szostak JW Proc Natl Acad Sci U S A; 2017 Jul; 114(29):7659-7664. PubMed ID: 28673998 [TBL] [Abstract][Full Text] [Related]
16. Structural interpretation of the effects of threo-nucleotides on nonenzymatic template-directed polymerization. Zhang W; Kim SC; Tam CP; Lelyveld VS; Bala S; Chaput JC; Szostak JW Nucleic Acids Res; 2021 Jan; 49(2):646-656. PubMed ID: 33347562 [TBL] [Abstract][Full Text] [Related]
17. Nonenzymatic oligomerization reactions on templates containing inosinic acid or diaminopurine nucleotide residues. Kozlov IA; Orgel LE Helv Chim Acta; 1999 Nov; 82(11):1799-805. PubMed ID: 11543571 [TBL] [Abstract][Full Text] [Related]
18. Structural Rationale for the Enhanced Catalysis of Nonenzymatic RNA Primer Extension by a Downstream Oligonucleotide. Zhang W; Tam CP; Zhou L; Oh SS; Wang J; Szostak JW J Am Chem Soc; 2018 Feb; 140(8):2829-2840. PubMed ID: 29411978 [TBL] [Abstract][Full Text] [Related]
19. Unusual Base-Pairing Interactions in Monomer-Template Complexes. Zhang W; Tam CP; Wang J; Szostak JW ACS Cent Sci; 2016 Dec; 2(12):916-926. PubMed ID: 28058281 [TBL] [Abstract][Full Text] [Related]
20. Replacing uridine with 2-thiouridine enhances the rate and fidelity of nonenzymatic RNA primer extension. Heuberger BD; Pal A; Del Frate F; Topkar VV; Szostak JW J Am Chem Soc; 2015 Feb; 137(7):2769-75. PubMed ID: 25654265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]