These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29023130)

  • 1. Neutron Reflectometry Elucidates Protein Adsorption from Human Blood Serum onto PEG Brushes.
    Latza VM; Rodriguez-Loureiro I; Kiesel I; Halperin A; Fragneto G; Schneck E
    Langmuir; 2017 Nov; 33(44):12708-12718. PubMed ID: 29023130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutron reflectometry from poly (ethylene-glycol) brushes binding anti-PEG antibodies: evidence of ternary adsorption.
    Schneck E; Berts I; Halperin A; Daillant J; Fragneto G
    Biomaterials; 2015 Apr; 46():95-104. PubMed ID: 25678119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutron reflectometry elucidates density profiles of deuterated proteins adsorbed onto surfaces displaying poly(ethylene glycol) brushes: evidence for primary adsorption.
    Schneck E; Schollier A; Halperin A; Moulin M; Haertlein M; Sferrazza M; Fragneto G
    Langmuir; 2013 Nov; 29(46):14178-87. PubMed ID: 24144259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. End Point Versus Backbone Specificity Governs Characteristics of Antibody Binding to Poly(ethylene glycol) Brushes.
    Latza VM; Rodriguez-Loureiro I; Fragneto G; Schneck E
    Langmuir; 2018 Nov; 34(46):13946-13955. PubMed ID: 30354149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chain conformation of a new class of PEG-based thermoresponsive polymer brushes grafted on silicon as determined by neutron reflectometry.
    Gao X; Kucerka N; Nieh MP; Katsaras J; Zhu S; Brash JL; Sheardown H
    Langmuir; 2009 Sep; 25(17):10271-8. PubMed ID: 19705903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary versus ternary adsorption of proteins onto PEG brushes.
    Halperin A; Fragneto G; Schollier A; Sferrazza M
    Langmuir; 2007 Oct; 23(21):10603-17. PubMed ID: 17803323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of Plasma Proteins onto PEGylated Lipid Bilayers: The Effect of PEG Size and Grafting Density.
    Lee H; Larson RG
    Biomacromolecules; 2016 May; 17(5):1757-65. PubMed ID: 27046506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ternary protein adsorption onto brushes: strong versus weak.
    Halperin A; Kröger M
    Langmuir; 2009 Oct; 25(19):11621-34. PubMed ID: 19673469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces.
    Pasche S; Vörös J; Griesser HJ; Spencer ND; Textor M
    J Phys Chem B; 2005 Sep; 109(37):17545-52. PubMed ID: 16853244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(l-glutamic acid)-g-poly(ethylene glycol) external layer in polyelectrolyte multilayer films: Characterization and resistance to serum protein adsorption.
    Szczepanowicz K; Kruk T; Świątek W; Bouzga AM; Simon CR; Warszyński P
    Colloids Surf B Biointerfaces; 2018 Jun; 166():295-302. PubMed ID: 29604572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma.
    Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE
    Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood Protein Exclusion from Polymer Brushes.
    Jumai'an E; Zhang L; Bevan MA
    ACS Nano; 2023 Feb; 17(3):2378-2386. PubMed ID: 36669160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strongly stretched protein resistant poly(ethylene glycol) brushes prepared by grafting-to.
    Emilsson G; Schoch RL; Feuz L; Höök F; Lim RY; Dahlin AB
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7505-15. PubMed ID: 25812004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neutron reflectivity study of polymer-modified phospholipid monolayers at the solid-solution interface: polyethylene glycol-lipids on silane-modified substrates.
    Kuhl TL; Majewski J; Wong JY; Steinberg S; Leckband DE; Israelachvili JN; Smith GS
    Biophys J; 1998 Nov; 75(5):2352-62. PubMed ID: 9788930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein adsorption on well-characterized polyethylene oxide brushes on gold: dependence on molecular weight and grafting density.
    Taylor W; Jones RA
    Langmuir; 2013 May; 29(20):6116-22. PubMed ID: 23617308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-range interactions between protein-coated particles and POEGMA brush layers in a serum environment.
    Wang Z; Luan Y; Gan T; Gong X; Chen H; Ngai T
    Colloids Surf B Biointerfaces; 2017 Feb; 150():279-287. PubMed ID: 28341156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BSA adsorption on bimodal PEO brushes.
    Bosker WT; Iakovlev PA; Norde W; Cohen Stuart MA
    J Colloid Interface Sci; 2005 Jun; 286(2):496-503. PubMed ID: 15897063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dense Poly(ethylene glycol) Brushes Reduce Adsorption and Stabilize the Unfolded Conformation of Fibronectin.
    Faulón Marruecos D; Kastantin M; Schwartz DK; Kaar JL
    Biomacromolecules; 2016 Mar; 17(3):1017-25. PubMed ID: 26866385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid POSS-containing brush on gold surfaces for protein resistance.
    Ye X; Gong J; Wang Z; Zhang Z; Han S; Jiang X
    Macromol Biosci; 2013 Jul; 13(7):921-6. PubMed ID: 23703844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths.
    Lazos D; Franzka S; Ulbricht M
    Langmuir; 2005 Sep; 21(19):8774-84. PubMed ID: 16142960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.