These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29023132)

  • 61. Interaction of a cyclostreptin analogue with the microtubule taxoid site: the covalent reaction rapidly follows binding.
    Bai R; Vanderwal CD; Díaz JF; Hamel E
    J Nat Prod; 2008 Mar; 71(3):370-4. PubMed ID: 18298077
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Role of DAPI in microtubule reactions at steady-state.
    Heusèle C; Bonne D
    Biochem Biophys Res Commun; 1985 Dec; 133(2):662-9. PubMed ID: 4084292
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Kinetics of association and dissociation of two enantiomers, NSC 613863 (R)-(+) and NSC 613862 (S)-(-) (CI 980), to tubulin.
    Barbier P; Peyrot V; Dumortier C; D'Hoore A; Rener GA; Engelborghs Y
    Biochemistry; 1996 Feb; 35(6):2008-15. PubMed ID: 8639685
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Involvement of colchicine binding site of tubulin in the polymerisation process.
    Dasgupta D; Rajgopalan R; Gurnani S
    FEBS Lett; 1983 Feb; 152(1):101-4. PubMed ID: 6404647
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Linkages between the dissociation of alpha beta tubulin into subunits and ligand binding: the ground state of tubulin is the GDP conformation.
    Shearwin KE; Perez-Ramirez B; Timasheff SN
    Biochemistry; 1994 Feb; 33(4):885-93. PubMed ID: 8305436
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Alterations of rings B and C of colchicine are cumulative in overall binding to tubulin but modify each kinetic step.
    Dumortier C; Gorbunoff MJ; Andreu JM; Engelborghs Y
    Biochemistry; 1996 Dec; 35(49):15900-6. PubMed ID: 8961956
    [TBL] [Abstract][Full Text] [Related]  

  • 67. CXI-benzo-84 reversibly binds to tubulin at colchicine site and induces apoptosis in cancer cells.
    Rai A; Gupta TK; Kini S; Kunwar A; Surolia A; Panda D
    Biochem Pharmacol; 2013 Aug; 86(3):378-91. PubMed ID: 23747346
    [TBL] [Abstract][Full Text] [Related]  

  • 68. N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)colcemid, a probe for different classes of colchicine-binding site on tubulin.
    Sengupta S; Puri KD; Surolia A; Roy S; Bhattacharyya B
    Eur J Biochem; 1993 Mar; 212(2):387-93. PubMed ID: 8444175
    [TBL] [Abstract][Full Text] [Related]  

  • 69. βI-tubulin mutations in the laulimalide/peloruside binding site mediate drug sensitivity by altering drug-tubulin interactions and microtubule stability.
    Kanakkanthara A; Rowe MR; Field JJ; Northcote PT; Teesdale-Spittle PH; Miller JH
    Cancer Lett; 2015 Sep; 365(2):251-60. PubMed ID: 26052091
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Energy-transfer studies of the distance between the high-affinity metal binding site and the colchicine and 8-anilino-1-naphthalenesulfonic acid binding sites on calf brain tubulin.
    Ward LD; Timasheff SN
    Biochemistry; 1988 Mar; 27(5):1508-14. PubMed ID: 3365404
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Taxanes with high potency inducing tubulin assembly overcome tumoural cell resistances.
    Matesanz R; Trigili C; Rodríguez-Salarichs J; Zanardi I; Pera B; Nogales A; Fang WS; Jímenez-Barbero J; Canales A; Barasoain I; Ojima I; Díaz JF
    Bioorg Med Chem; 2014 Sep; 22(18):5078-90. PubMed ID: 25047938
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Polymerization and calcium binding of the tubulin-colchicine complex in the GDP state.
    Doi H; Kawaguchi M; Timasheff SN
    Biosci Biotechnol Biochem; 2003 Aug; 67(8):1643-52. PubMed ID: 12951495
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Cyclostreptin binds covalently to microtubule pores and lumenal taxoid binding sites.
    Buey RM; Calvo E; Barasoain I; Pineda O; Edler MC; Matesanz R; Cerezo G; Vanderwal CD; Day BW; Sorensen EJ; López JA; Andreu JM; Hamel E; Díaz JF
    Nat Chem Biol; 2007 Feb; 3(2):117-25. PubMed ID: 17206139
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Crystallographic structure of tubulin: implications for dynamics and drug binding.
    Downing KH; Nogales E
    Cell Struct Funct; 1999 Oct; 24(5):269-75. PubMed ID: 15216882
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Colchicine-binding protein of the liver. Its characterization and relation to microtubules.
    Patzelt C; Singh A; Marchand YL; Orci L; Jeanrenaud B
    J Cell Biol; 1975 Sep; 66(3):609-20. PubMed ID: 808552
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Synthesis and tubulin binding of novel C-10 analogues of colchicine.
    Staretz ME; Hastie SB
    J Med Chem; 1993 Mar; 36(6):758-64. PubMed ID: 8459402
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mechanism of inhibition of microtubule polymerization by colchicine: inhibitory potencies of unliganded colchicine and tubulin-colchicine complexes.
    Skoufias DA; Wilson L
    Biochemistry; 1992 Jan; 31(3):738-46. PubMed ID: 1731931
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structural intermediates in the assembly of taxoid-induced microtubules and GDP-tubulin double rings: time-resolved X-ray scattering.
    Diaz JF; Andreu JM; Diakun G; Towns-Andrews E; Bordas J
    Biophys J; 1996 May; 70(5):2408-20. PubMed ID: 9172767
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Polymerization of the tubulin-colchicine complex: relation to microtubule assembly.
    Andreu JM; Wagenknecht T; Timasheff SN
    Biochemistry; 1983 Mar; 22(7):1556-66. PubMed ID: 6849866
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Reexamination of the role of nonhydrolyzable guanosine 5'-triphosphate analogues in tubulin polymerization: reaction conditions are a critical factor for effective interactions at the exchangeable nucleotide site.
    Hamel E; Lin CM
    Biochemistry; 1990 Mar; 29(11):2720-9. PubMed ID: 2346744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.