BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29023147)

  • 1. Nitrogen Oxides in Early Earth's Atmosphere as Electron Acceptors for Life's Emergence.
    Wong ML; Charnay BD; Gao P; Yung YL; Russell MJ
    Astrobiology; 2017 Oct; 17(10):975-983. PubMed ID: 29023147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Estimates of Nitrogen Fixation on Early Earth.
    Christensen M; Adams D; Wong ML; Dunn P; Yung YL
    Life (Basel); 2024 May; 14(5):. PubMed ID: 38792622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.
    Gebauer S; Grenfell JL; Stock JW; Lehmann R; Godolt M; von Paris P; Rauer H
    Astrobiology; 2017 Jan; 17(1):27-54. PubMed ID: 28103105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comments on the role of H2S in the chemistry of Earth's early atmosphere and in prebiotic synthesis.
    Clark PD; Dowling NI; Huang M
    J Mol Evol; 1998 Aug; 47(2):127-32. PubMed ID: 9694661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can Life Begin on Enceladus? A Perspective from Hydrothermal Chemistry.
    Deamer D; Damer B
    Astrobiology; 2017 Sep; 17(9):834-839. PubMed ID: 28682665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prebiotic Formation of Protoalkaloids within Alkaline Oceanic Hydrothermal Vents in the Hadean Seafloor as a Prerequisite for Evolutionary Biodiversity.
    Stefano GB; Kream RM
    Med Sci Monit; 2020 Sep; 26():e928415. PubMed ID: 32959807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolution of nitrogen cycling.
    Mancinelli RL; McKay CP
    Orig Life Evol Biosph; 1988; 18():311-25. PubMed ID: 11538360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating Serpentinization as It Could Apply to the Emergence of Life Using the JPL Hydrothermal Reactor.
    White LM; Shibuya T; Vance SD; Christensen LE; Bhartia R; Kidd R; Hoffmann A; Stucky GD; Kanik I; Russell MJ
    Astrobiology; 2020 Mar; 20(3):307-326. PubMed ID: 32125196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abiotic nitrogen reduction on the early Earth.
    Brandes JA; Boctor NZ; Cody GD; Cooper BA; Hazen RM; Yoder HS
    Nature; 1998 Sep; 395(6700):365-7. PubMed ID: 9759725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Earth Without Life: A Systems Model of a Global Abiotic Nitrogen Cycle.
    Laneuville M; Kameya M; Cleaves HJ
    Astrobiology; 2018 Jul; 18(7):897-914. PubMed ID: 29634320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frankenstein or a Submarine Alkaline Vent: Who is Responsible for Abiogenesis?: Part 2: As life is now, so it must have been in the beginning.
    Branscomb E; Russell MJ
    Bioessays; 2018 Aug; 40(8):e1700182. PubMed ID: 29974482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The drive to life on wet and icy worlds.
    Russell MJ; Barge LM; Bhartia R; Bocanegra D; Bracher PJ; Branscomb E; Kidd R; McGlynn S; Meier DH; Nitschke W; Shibuya T; Vance S; White L; Kanik I
    Astrobiology; 2014 Apr; 14(4):308-43. PubMed ID: 24697642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid cycling of reactive nitrogen in the marine boundary layer.
    Ye C; Zhou X; Pu D; Stutz J; Festa J; Spolaor M; Tsai C; Cantrell C; Mauldin RL; Campos T; Weinheimer A; Hornbrook RS; Apel EC; Guenther A; Kaser L; Yuan B; Karl T; Haggerty J; Hall S; Ullmann K; Smith JN; Ortega J; Knote C
    Nature; 2016 Apr; 532(7600):489-91. PubMed ID: 27064904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic-chemical coupling of the upper troposphere and lower stratosphere region.
    Grewe V; Reithmeier C; Shindell DT
    Chemosphere; 2002 Jun; 47(8):851-61. PubMed ID: 12079080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front.
    Russell MJ; Hall AJ
    J Geol Soc London; 1997 May; 154(3):377-402. PubMed ID: 11541234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen fixation by corona discharge on the early precambrian Earth.
    Nna-Mvondo D; Navarro-González R; Raulin F; Coll P
    Orig Life Evol Biosph; 2005 Oct; 35(5):401-9. PubMed ID: 16231204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning.
    Navarro-González R; McKay CP; Mvondo DN
    Nature; 2001 Jul; 412(6842):61-4. PubMed ID: 11452304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen Fixation at Early Mars.
    Adams D; Luo Y; Wong ML; Dunn P; Christensen M; Dong C; Hu R; Yung Y
    Astrobiology; 2021 Aug; 21(8):968-980. PubMed ID: 34339294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From cytoplasm to environment: the inorganic ingredients for the origin of life.
    Novoselov AA; Serrano P; Pacheco ML; Chaffin MS; O'Malley-James JT; Moreno SC; Ribeiro FB
    Astrobiology; 2013 Mar; 13(3):294-302. PubMed ID: 23406344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of nitrogen oxides by lightning and coronae discharges in simulated early Earth, Venus and Mars environments.
    Nna Mvondo D; Navarro-Gonzalez R; McKay CP; Coll P; Raulin F
    Adv Space Res; 2001; 27(2):217-23. PubMed ID: 11605635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.