These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 29023398)

  • 1. The Impact of Oxidative Stress on the Bone System in Response to the Space Special Environment.
    Tian Y; Ma X; Yang C; Su P; Yin C; Qian AR
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 29023398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Oxidative Stress on Cardiovascular System in Response to Gravity.
    Takahashi K; Okumura H; Guo R; Naruse K
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28677649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Iron Overload and Oxidative Damage on the Musculoskeletal System in the Space Environment: Data from Spaceflights and Ground-Based Simulation Models.
    Yang J; Zhang G; Dong D; Shang P
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30177626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of microgravity on bone in humans.
    Grimm D; Grosse J; Wehland M; Mann V; Reseland JE; Sundaresan A; Corydon TJ
    Bone; 2016 Jun; 87():44-56. PubMed ID: 27032715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment.
    Rea G; Cristofaro F; Pani G; Pascucci B; Ghuge SA; Corsetto PA; Imbriani M; Visai L; Rizzo AM
    J Proteomics; 2016 Mar; 137():3-18. PubMed ID: 26571091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight.
    Tahimic CGT; Globus RK
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 29035346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weightlessness as an accelerated model of nutritional disturbances.
    Maillet A; Beaufrere B; Di Nardo P; Elia M; Pichard C
    Curr Opin Clin Nutr Metab Care; 2001 Jul; 4(4):301-6. PubMed ID: 11458025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium metabolism and the osteopenia of space flight.
    Scratcherd T; Grundy D
    J Br Interplanet Soc; 1989 Aug; 42(7):371-3. PubMed ID: 11540231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Bone architecture and strength on unloading].
    Endo I; Matsumoto T
    Clin Calcium; 2013 Jul; 23(7):1013-9. PubMed ID: 23811590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trace element composition and histological analysis of rat bones from the space shuttle.
    Yamada G; Sugimura K; Nakamura S; Yamada MO; Tohno Y; Maruyama I; Kitajima I; Minami T
    Life Sci; 1997; 60(9):635-42. PubMed ID: 9048966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Space flight/bedrest immobilization and bone. In-flight exercise device to support a health of astronauts].
    Mukai C; Ohshima H
    Clin Calcium; 2012 Dec; 22(12):1887-93. PubMed ID: 23187082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological adaptations and countermeasures associated with long-duration spaceflights.
    Tipton CM; Hargens A
    Med Sci Sports Exerc; 1996 Aug; 28(8):974-6. PubMed ID: 8871906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative Stress as Cause, Consequence, or Biomarker of Altered Female Reproduction and Development in the Space Environment.
    Steller JG; Alberts JR; Ronca AE
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30477143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative Stress and the Kidney in the Space Environment.
    Pavlakou P; Dounousi E; Roumeliotis S; Eleftheriadis T; Liakopoulos V
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30326648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the mir space station.
    Smith SM; Wastney ME; O'Brien KO; Morukov BV; Larina IM; Abrams SA; Davis-Street JE; Oganov V; Shackelford LC
    J Bone Miner Res; 2005 Feb; 20(2):208-18. PubMed ID: 15647814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microgravity: the immune response and bone.
    Zayzafoon M; Meyers VE; McDonald JM
    Immunol Rev; 2005 Dec; 208():267-80. PubMed ID: 16313354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of microgravity on bone metabolism in vitro and in vivo.
    Loomer PM
    Crit Rev Oral Biol Med; 2001; 12(3):252-61. PubMed ID: 11497376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exercise and pharmacological countermeasures for bone loss during long-duration space flight.
    Cavanagh PR; Licata AA; Rice AJ
    Gravit Space Biol Bull; 2005 Jun; 18(2):39-58. PubMed ID: 16038092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteobiology, strain, and microgravity. Part II: studies at the tissue level.
    Vico L; Hinsenkamp M; Jones D; Marie PJ; Zallone A; Cancedda R
    Calcif Tissue Int; 2001 Jan; 68(1):1-10. PubMed ID: 12037617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Secondary osteoporosis UPDATE. Bone loss due to bed rest and human space flight study].
    Ohshima H
    Clin Calcium; 2010 May; 20(5):709-16. PubMed ID: 20445282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.