These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 29023403)

  • 21. Obimon: An open-source device enabling group measurement of electrodermal activity.
    Kasos K; Zimonyi S; Gonye B; Köteles F; Kasos E; Kotyuk E; Varga K; Veres A; Szekely A
    Psychophysiology; 2019 Aug; 56(8):e13374. PubMed ID: 30950524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Classification of Dichotomous Emotional States Using Electrodermal Activity Signals and Multispectral Analysis.
    Veeranki YR; Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2022 May; 294():941-942. PubMed ID: 35612249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detecting Emotions through Electrodermal Activity in Learning Contexts: A Systematic Review.
    Horvers A; Tombeng N; Bosse T; Lazonder AW; Molenaar I
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883870
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrodermal activity analysis during affective haptic elicitation.
    Greco A; Valenza G; Nardelli M; Bianchi M; Lanata A; Scilingo EP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5777-80. PubMed ID: 26737605
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stress Detection Using Frequency Spectrum Analysis of Wrist-Measured Electrodermal Activity.
    Stržinar Ž; Sanchis A; Ledezma A; Sipele O; Pregelj B; Škrjanc I
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679760
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolutional Neural Network.
    Ganapathy N; Veeranki YR; Kumar H; Swaminathan R
    J Med Syst; 2021 Mar; 45(4):49. PubMed ID: 33660087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine Learning Techniques for Arousal Classification from Electrodermal Activity: A Systematic Review.
    Sánchez-Reolid R; López de la Rosa F; Sánchez-Reolid D; López MT; Fernández-Caballero A
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combining Electrodermal Activity and Speech Analysis towards a more Accurate Emotion Recognition System.
    Greco A; Marzi C; Lanata A; Scilingo EP; Vanello N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():229-232. PubMed ID: 31945884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. EDA-Graph: Graph Signal Processing of Electrodermal Activity for Emotional States Detection.
    Mercado-Diaz LR; Veeranki YR; Marmolejo-Ramos F; Posada-Quintero HF
    IEEE J Biomed Health Inform; 2024 Aug; 28(8):4599-4612. PubMed ID: 38801681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating mechanical properties of a fabric-based affective haptic display through electrodermal activity analysis.
    Greco A; Valenza G; Scilingo EP
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():407-410. PubMed ID: 28268359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combination of wearable multi-biosensor platform and resonance frequency training for stress management of the unemployed population.
    Wu W; Gil Y; Lee J
    Sensors (Basel); 2012 Sep; 12(10):13225-48. PubMed ID: 23201994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stress State Classification Based on Deep Neural Network and Electrodermal Activity Modeling.
    Vasile F; Vizziello A; Brondino N; Savazzi P
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Compressed Sensing Based Decomposition of Electrodermal Activity Signals.
    Jain S; Oswal U; Xu KS; Eriksson B; Haupt J
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2142-2151. PubMed ID: 27893381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wearable sensor glove based on conducting fabric using electrodermal activity and pulse-wave sensors for e-health application.
    Lee Y; Lee B; Lee M
    Telemed J E Health; 2010 Mar; 16(2):209-17. PubMed ID: 20070159
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automatic identification of artifacts in electrodermal activity data.
    Taylor S; Jaques N; Chen W; Fedor S; Sano A; Picard R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1934-7. PubMed ID: 26736662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pen-Type Electrodermal Activity Sensing System for Stress Detection Based on Likelihood Ratios.
    Lee T; Natarajan B; Warren S
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1467-1476. PubMed ID: 34855600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feasibility of Electrodermal Activity and Photoplethysmography Data Acquisition at the Foot Using a Sock Form Factor.
    Ferreira AF; da Silva HP; Alves H; Marques N; Fred A
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Correlation Analysis of Different Measurement Places of Galvanic Skin Response in Test Groups Facing Pleasant and Unpleasant Stimuli.
    Sanchez-Comas A; Synnes K; Molina-Estren D; Troncoso-Palacio A; Comas-González Z
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design and Validation of a Multimodal Wearable Device for Simultaneous Collection of Electrocardiogram, Electromyogram, and Electrodermal Activity.
    McNaboe R; Beardslee L; Kong Y; Smith BN; Chen IP; Posada-Quintero HF; Chon KH
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of physiological signals for recognition of boredom, pain, and surprise emotions.
    Jang EH; Park BJ; Park MS; Kim SH; Sohn JH
    J Physiol Anthropol; 2015 Jun; 34(1):25. PubMed ID: 26084816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.