These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
434 related articles for article (PubMed ID: 29023405)
1. The Aspergillus flavus Homeobox Gene, hbx1, is Required for Development and Aflatoxin Production. Cary JW; Harris-Coward P; Scharfenstein L; Mack BM; Chang PK; Wei Q; Lebar M; Carter-Wientjes C; Majumdar R; Mitra C; Banerjee S; Chanda A Toxins (Basel); 2017 Oct; 9(10):. PubMed ID: 29023405 [TBL] [Abstract][Full Text] [Related]
2. The Transcriptional Regulator Hbx1 Affects the Expression of Thousands of Genes in the Aflatoxin-Producing Fungus Cary JW; Entwistle S; Satterlee T; Mack BM; Gilbert MK; Chang PK; Scharfenstein L; Yin Y; Calvo AM G3 (Bethesda); 2019 Jan; 9(1):167-178. PubMed ID: 30425054 [TBL] [Abstract][Full Text] [Related]
3. New Insights of Transcriptional Regulator AflR in Aspergillus flavus Physiology. Wang P; Xu J; Chang PK; Liu Z; Kong Q Microbiol Spectr; 2022 Feb; 10(1):e0079121. PubMed ID: 35080432 [TBL] [Abstract][Full Text] [Related]
4. Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production. Chang PK; Scharfenstein LL; Li P; Ehrlich KC Fungal Genet Biol; 2013; 58-59():71-9. PubMed ID: 23994319 [TBL] [Abstract][Full Text] [Related]
5. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Duran RM; Cary JW; Calvo AM Appl Microbiol Biotechnol; 2007 Jan; 73(5):1158-68. PubMed ID: 16988822 [TBL] [Abstract][Full Text] [Related]
6. NsdC and NsdD affect Aspergillus flavus morphogenesis and aflatoxin production. Cary JW; Harris-Coward PY; Ehrlich KC; Mack BM; Kale SP; Larey C; Calvo AM Eukaryot Cell; 2012 Sep; 11(9):1104-11. PubMed ID: 22798394 [TBL] [Abstract][Full Text] [Related]
7. RNA sequencing of an nsdC mutant reveals global regulation of secondary metabolic gene clusters in Aspergillus flavus. Gilbert MK; Mack BM; Wei Q; Bland JM; Bhatnagar D; Cary JW Microbiol Res; 2016 Jan; 182():150-61. PubMed ID: 26686623 [TBL] [Abstract][Full Text] [Related]
8. The 14-3-3 Protein Homolog ArtA Regulates Development and Secondary Metabolism in the Opportunistic Plant Pathogen Aspergillus flavus. Ibarra BA; Lohmar JM; Satterlee T; McDonald T; Cary JW; Calvo AM Appl Environ Microbiol; 2018 Mar; 84(5):. PubMed ID: 29247055 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of Aspergillus flavus strains in China. Mamo FT; Shang B; Selvaraj JN; Wang Y; Liu Y J Microbiol; 2018 Feb; 56(2):119-127. PubMed ID: 29392555 [TBL] [Abstract][Full Text] [Related]
10. Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis. Chang PK; Scharfenstein LL; Mack B; Ehrlich KC Appl Environ Microbiol; 2012 Nov; 78(21):7557-63. PubMed ID: 22904054 [TBL] [Abstract][Full Text] [Related]
11. Genes differentially expressed by Aspergillus flavus strains after loss of aflatoxin production by serial transfers. Chang PK; Wilkinson JR; Horn BW; Yu J; Bhatnagar D; Cleveland TE Appl Microbiol Biotechnol; 2007 Dec; 77(4):917-25. PubMed ID: 17955191 [TBL] [Abstract][Full Text] [Related]
12. Elucidation of veA-dependent genes associated with aflatoxin and sclerotial production in Aspergillus flavus by functional genomics. Cary JW; OBrian GR; Nielsen DM; Nierman W; Harris-Coward P; Yu J; Bhatnagar D; Cleveland TE; Payne GA; Calvo AM Appl Microbiol Biotechnol; 2007 Oct; 76(5):1107-18. PubMed ID: 17646985 [TBL] [Abstract][Full Text] [Related]
13. Analysis of genes early expressed during Aspergillus flavus colonisation of hazelnut. Gallo A; Epifani F; Bonsegna S; Pascale M; Santino A; Perrone G Int J Food Microbiol; 2010 Jan; 137(1):111-5. PubMed ID: 19948368 [TBL] [Abstract][Full Text] [Related]
14. The PHD Transcription Factor Rum1 Regulates Morphogenesis and Aflatoxin Biosynthesis in Hu Y; Yang G; Zhang D; Liu Y; Li Y; Lin G; Guo Z; Wang S; Zhuang Z Toxins (Basel); 2018 Jul; 10(7):. PubMed ID: 30036940 [No Abstract] [Full Text] [Related]
15. Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus. Chang PK; Horn BW; Dorner JW Fungal Genet Biol; 2009 Feb; 46(2):176-82. PubMed ID: 19038354 [TBL] [Abstract][Full Text] [Related]
16. Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Kale SP; Milde L; Trapp MK; Frisvad JC; Keller NP; Bok JW Fungal Genet Biol; 2008 Oct; 45(10):1422-9. PubMed ID: 18667168 [TBL] [Abstract][Full Text] [Related]
17. Control of aflatoxin production of Aspergillus flavus and Aspergillus parasiticus using RNA silencing technology by targeting aflD (nor-1) gene. Abdel-Hadi AM; Caley DP; Carter DR; Magan N Toxins (Basel); 2011 Jun; 3(6):647-59. PubMed ID: 22069731 [TBL] [Abstract][Full Text] [Related]
18. Molasses supplementation promotes conidiation but suppresses aflatoxin production by small sclerotial Aspergillus flavus. Chang PK; Hua SS Lett Appl Microbiol; 2007 Feb; 44(2):131-7. PubMed ID: 17257250 [TBL] [Abstract][Full Text] [Related]
19. Aspergillus flavus aswA, a gene homolog of Aspergillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites. Chang PK; Scharfenstein LL; Li RW; Arroyo-Manzanares N; De Saeger S; Diana Di Mavungu J Fungal Genet Biol; 2017 Jul; 104():29-37. PubMed ID: 28442441 [TBL] [Abstract][Full Text] [Related]
20. Aspergillus flavus GPI-anchored protein-encoding ecm33 has a role in growth, development, aflatoxin biosynthesis, and maize infection. Chang PK; Zhang Q; Scharfenstein L; Mack B; Yoshimi A; Miyazawa K; Abe K Appl Microbiol Biotechnol; 2018 Jun; 102(12):5209-5220. PubMed ID: 29696338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]