These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29023482)

  • 1. The trade-off between morphology and control in the co-optimized design of robots.
    Rosendo A; von Atzigen M; Iida F
    PLoS One; 2017; 12(10):e0186107. PubMed ID: 29023482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological Evolution of Physical Robots through Model-Free Phenotype Development.
    Brodbeck L; Hauser S; Iida F
    PLoS One; 2015; 10(6):e0128444. PubMed ID: 26091255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots.
    Vujovic V; Rosendo A; Brodbeck L; Iida F
    Artif Life; 2017; 23(2):169-185. PubMed ID: 28513207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reality-Assisted Evolution of Soft Robots through Large-Scale Physical Experimentation: A Review.
    Howison T; Hauser S; Hughes J; Iida F
    Artif Life; 2020; 26(4):484-506. PubMed ID: 33493077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolving mobile robots in simulated and real environments.
    Miglino O; Lund HH; Nolfi S
    Artif Life; 1995; 2(4):417-34. PubMed ID: 8942055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological computation of multi-gaited robot locomotion based on free vibration.
    Reis M; Yu X; Maheshwari N; Iida F
    Artif Life; 2013; 19(1):97-114. PubMed ID: 23186346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolving a Behavioral Repertoire for a Walking Robot.
    Cully A; Mouret JB
    Evol Comput; 2016; 24(1):59-88. PubMed ID: 25585055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing Robot Controller Optimization Methods on Evolvable Morphologies.
    van Diggelen F; Ferrante E; Eiben AE
    Evol Comput; 2024 Jun; 32(2):105-124. PubMed ID: 37200212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.
    Ampatzis C; Tuci E; Trianni V; Christensen AL; Dorigo M
    Artif Life; 2009; 15(4):465-84. PubMed ID: 19463056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flocking algorithm for autonomous flying robots.
    Virágh C; Vásárhelyi G; Tarcai N; Szörényi T; Somorjai G; Nepusz T; Vicsek T
    Bioinspir Biomim; 2014 Jun; 9(2):025012. PubMed ID: 24852272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robots in human biomechanics--a study on ankle push-off in walking.
    Renjewski D; Seyfarth A
    Bioinspir Biomim; 2012 Sep; 7(3):036005. PubMed ID: 22510333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-World Evolution of Robot Morphologies: A Proof of Concept.
    Jelisavcic M; de Carlo M; Hupkes E; Eustratiadis P; Orlowski J; Haasdijk E; Auerbach JE; Eiben AE
    Artif Life; 2017; 23(2):206-235. PubMed ID: 28513201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The utility of evolving simulated robot morphology increases with task complexity for object manipulation.
    Bongard J
    Artif Life; 2010; 16(3):201-23. PubMed ID: 20059328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encouraging behavioral diversity in evolutionary robotics: an empirical study.
    Mouret JB; Doncieux S
    Evol Comput; 2012; 20(1):91-133. PubMed ID: 21838553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Jumping robots: a biomimetic solution to locomotion across rough terrain.
    Armour R; Paskins K; Bowyer A; Vincent J; Megill W; Bomphrey R
    Bioinspir Biomim; 2007 Sep; 2(3):S65-82. PubMed ID: 17848786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research.
    Raj A; Thakur A
    Bioinspir Biomim; 2016 Apr; 11(3):031001. PubMed ID: 27073001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid search algorithm for swarm robots searching in an unknown environment.
    Li S; Li L; Lee G; Zhang H
    PLoS One; 2014; 9(11):e111970. PubMed ID: 25386855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolving locomotion for a 12-DOF quadruped robot in simulated environments.
    Klaus G; Glette K; Høvin M
    Biosystems; 2013 May; 112(2):102-6. PubMed ID: 23499813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On extracting design principles from biology: I. Method-General answers to high-level design questions for bioinspired robots.
    Haberland M; Kim S
    Bioinspir Biomim; 2015 Feb; 10(1):016010. PubMed ID: 25643176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditions for worm-robot locomotion in a flexible environment: theory and experiments.
    Zarrouk D; Sharf I; Shoham M
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):1057-67. PubMed ID: 22231667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.