These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29023485)

  • 1. A degradation-based sorting method for lithium-ion battery reuse.
    Chen H; Shen J
    PLoS One; 2017; 12(10):e0185922. PubMed ID: 29023485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries.
    Dunn JB; Gaines L; Sullivan J; Wang MQ
    Environ Sci Technol; 2012 Nov; 46(22):12704-10. PubMed ID: 23075406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmentally-friendly lithium recycling from a spent organic li-ion battery.
    Renault S; Brandell D; Edström K
    ChemSusChem; 2014 Oct; 7(10):2859-67. PubMed ID: 25170568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental impacts of hydrometallurgical recycling and reusing for manufacturing of lithium-ion traction batteries in China.
    Jiang S; Hua H; Zhang L; Liu X; Wu H; Yuan Z
    Sci Total Environ; 2022 Mar; 811():152224. PubMed ID: 34896143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.
    Zheng X; Gao W; Zhang X; He M; Lin X; Cao H; Zhang Y; Sun Z
    Waste Manag; 2017 Feb; 60():680-688. PubMed ID: 27993441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation.
    Wang X; Gaustad G; Babbitt CW
    Waste Manag; 2016 May; 51():204-213. PubMed ID: 26577459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries.
    Li J; Wang G; Xu Z
    Waste Manag; 2016 Jun; 52():221-7. PubMed ID: 27021697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An innovative approach to recover the metal values from spent lithium-ion batteries.
    Barik SP; Prabaharan G; Kumar B
    Waste Manag; 2016 May; 51():222-226. PubMed ID: 26553316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical recycling of cell phone Li-ion batteries: Application in environmental remediation.
    Gonçalves MC; Garcia EM; Taroco HA; Gorgulho HF; Melo JO; Silva RR; Souza AG
    Waste Manag; 2015 Jun; 40():144-50. PubMed ID: 25728092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM.
    Zhang C; He Y; Yuan L; Xiang S; Wang J
    Comput Intell Neurosci; 2015; 2015():918305. PubMed ID: 26413090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries.
    Yang Q; Xu J; Cao B; Li X
    PLoS One; 2017; 12(2):e0172424. PubMed ID: 28212405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced recycling network for spent e-bicycle batteries: A case study in Xuzhou, China.
    Chen F; Yang B; Zhang W; Ma J; Lv J; Yang Y
    Waste Manag; 2017 Feb; 60():660-665. PubMed ID: 27679969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling.
    Guo X; Cao X; Huang G; Tian Q; Sun H
    J Environ Manage; 2017 Aug; 198(Pt 1):84-89. PubMed ID: 28453989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the process of harmless treatment of residual electrolyte in battery disassembly.
    Zhu Y; Ding Q; Zhao Y; Ai J; Li Y; Cao YC
    Waste Manag Res; 2020 Nov; 38(11):1295-1300. PubMed ID: 32308154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation and management of waste electric vehicle batteries in China.
    Xu C; Zhang W; He W; Li G; Huang J; Zhu H
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):20825-20830. PubMed ID: 28803394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques.
    Zhang T; He Y; Wang F; Ge L; Zhu X; Li H
    Waste Manag; 2014 Jun; 34(6):1051-8. PubMed ID: 24472715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries.
    Zeng X; Li J
    J Hazard Mater; 2014 Apr; 271():50-6. PubMed ID: 24607415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).
    Guo Y; Li F; Zhu H; Li G; Huang J; He W
    Waste Manag; 2016 May; 51():227-233. PubMed ID: 26674969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithium battery reusing and recycling: A circular economy insight.
    Pagliaro M; Meneguzzo F
    Heliyon; 2019 Jun; 5(6):e01866. PubMed ID: 31245638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.