These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29023717)

  • 1. Recovery from the anatomical effects of long-term monocular deprivation in cat lateral geniculate nucleus.
    Duffy KR; Fong MF; Mitchell DE; Bear MF
    J Comp Neurol; 2018 Feb; 526(2):310-323. PubMed ID: 29023717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Susceptibility to monocular deprivation following immersion in darkness either late into or beyond the critical period.
    Duffy KR; Lingley AJ; Holman KD; Mitchell DE
    J Comp Neurol; 2016 Sep; 524(13):2643-53. PubMed ID: 26878686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of structural modifications induced by monocular retinal inactivation and monocular deprivation in the developing cat lateral geniculate nucleus.
    Duffy KR; Crowder NA; Heynen AJ; Bear MF
    J Comp Neurol; 2023 Aug; 531(12):1244-1260. PubMed ID: 37139534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binocular eyelid closure promotes anatomical but not behavioral recovery from monocular deprivation.
    Duffy KR; Bukhamseen DH; Smithen MJ; Mitchell DE
    Vision Res; 2015 Sep; 114():151-60. PubMed ID: 25536470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of Peak Plasticity Induced by Brief Dark Exposure.
    Lingley AJ; Mitchell DE; Crowder NA; Duffy KR
    Neural Plast; 2019; 2019():3198285. PubMed ID: 31565047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex.
    Mower GD; Caplan CJ; Christen WG; Duffy FH
    J Comp Neurol; 1985 May; 235(4):448-66. PubMed ID: 3998219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of neurofilament following early monocular deprivation.
    O'Leary TP; Kutcher MR; Mitchell DE; Duffy KR
    Front Syst Neurosci; 2012; 6():22. PubMed ID: 22509156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoskeleton alteration correlates with gross structural plasticity in the cat lateral geniculate nucleus.
    Kutcher MR; Duffy KR
    Vis Neurosci; 2007; 24(6):775-85. PubMed ID: 17915043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monocular deprivation provokes alteration of the neuronal cytoskeleton in developing cat lateral geniculate nucleus.
    Duffy KR; Slusar JE
    Vis Neurosci; 2009; 26(3):319-28. PubMed ID: 19519963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development of soma size changes in the C-laminae of the cat lateral geniculate nucleus following monocular deprivation.
    Murakami DM; Wilson PD
    Brain Res; 1987 Oct; 432(2):215-24. PubMed ID: 3676838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short periods of darkness fail to restore visual or neural plasticity in adult cats.
    Holman KD; Duffy KR; Mitchell DE
    Vis Neurosci; 2018 Jan; 35():E002. PubMed ID: 29905119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of visual experience in activating critical period in cat visual cortex.
    Mower GD; Christen WG
    J Neurophysiol; 1985 Feb; 53(2):572-89. PubMed ID: 3981230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thalamic activity that drives visual cortical plasticity.
    Linden ML; Heynen AJ; Haslinger RH; Bear MF
    Nat Neurosci; 2009 Apr; 12(4):390-2. PubMed ID: 19252494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further evidence of an early critical period in the development of the cat's dorsal lateral geniculate nucleus.
    Sherman SM; Wilson JR
    J Comp Neurol; 1981 Mar; 196(3):459-70. PubMed ID: 7217367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of early periods of monocular deprivation and reverse lid suture on the development of Cat-301 immunoreactivity in the dorsal lateral geniculate nucleus (dLGN) of the cat.
    Kind PC; Beaver CJ; Mitchell DE
    J Comp Neurol; 1995 Sep; 359(4):523-36. PubMed ID: 7499545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shrinkage of X cells in the lateral geniculate nucleus after monocular deprivation revealed by FoxP2 labeling.
    Duffy KR; Holman KD; Mitchell DE
    Vis Neurosci; 2014 May; 31(3):253-61. PubMed ID: 24480423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term histological changes in the macaque primary visual cortex and the lateral geniculate nucleus after monocular deprivation produced by early restricted retinal lesions and diffuser induced form deprivation.
    Takahata T; Patel NB; Balaram P; Chino YM; Kaas JH
    J Comp Neurol; 2018 Dec; 526(18):2955-2972. PubMed ID: 30004587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of short-term occlusion therapy on reversal of the anatomical and physiological effects of monocular deprivation in the lateral geniculate nucleus and visual cortex of kittens.
    Crewther SG; Crewther DP; Mitchell DE
    Exp Brain Res; 1983; 51(2):206-16. PubMed ID: 6617792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homeostatic plasticity in the visual thalamus by monocular deprivation.
    Krahe TE; Guido W
    J Neurosci; 2011 May; 31(18):6842-9. PubMed ID: 21543614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic density in geniculocortical afferents remains constant after monocular deprivation in the cat.
    Silver MA; Stryker MP
    J Neurosci; 1999 Dec; 19(24):10829-42. PubMed ID: 10594065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.