These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29023823)

  • 21. An electrophysiological study of response conflict processing across the lifespan: assessing the roles of conflict monitoring, cue utilization, response anticipation, and response suppression.
    Hämmerer D; Li SC; Müller V; Lindenberger U
    Neuropsychologia; 2010 Sep; 48(11):3305-16. PubMed ID: 20638396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implicit attention to negative social, in contrast to nonsocial, words in the Stroop task differs between individuals high and low in loneliness: Evidence from event-related brain microstates.
    Cacioppo S; Balogh S; Cacioppo JT
    Cortex; 2015 Sep; 70():213-33. PubMed ID: 26195152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of working memory load on electrophysiological markers of visuospatial orienting in a spatial cueing task simulating a traffic situation.
    Vossen AY; Ross V; Jongen EM; Ruiter RA; Smulders FT
    Psychophysiology; 2016 Feb; 53(2):237-51. PubMed ID: 26524126
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of spatial information in advance task-set control: an event-related potential study.
    Astle DE; Jackson GM; Swainson R
    Eur J Neurosci; 2008 Oct; 28(7):1404-18. PubMed ID: 18973567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Infant Cries Rattle Adult Cognition.
    Dudek J; Faress A; Bornstein MH; Haley DW
    PLoS One; 2016; 11(5):e0154283. PubMed ID: 27191845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial cueing modulates the monitoring of correct responses.
    Hoffmann S; Wascher E
    Neurosci Lett; 2012 Jan; 506(2):225-8. PubMed ID: 22108568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance monitoring and the causal attribution of errors.
    Steinhauser M; Kiesel A
    Cogn Affect Behav Neurosci; 2011 Sep; 11(3):309-20. PubMed ID: 21573741
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural Dynamics of Context-sensitive Adjustments in Cognitive Flexibility.
    Siqi-Liu A; Egner T; Woldorff MG
    J Cogn Neurosci; 2022 Feb; 34(3):480-494. PubMed ID: 35015871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signaling a switch: neural correlates of task switching guided by task cues and transition cues.
    West R; Langley MM; Bailey K
    Psychophysiology; 2011 May; 48(5):612-23. PubMed ID: 20840196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Error positivity is related to attentional control of task switching.
    Tanaka H
    Neuroreport; 2009 May; 20(8):820-4. PubMed ID: 19384255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of characteristics of target cues on task interference from prospective memory.
    Chen Y; Huang X; Jackson T; Yang H
    Neuroreport; 2009 Jan; 20(1):81-6. PubMed ID: 18978643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multisubject Decomposition of Event-related Positivities in Cognitive Control: Tackling Age-related Changes in Reactive Control.
    Enriquez-Geppert S; Barceló F
    Brain Topogr; 2018 Jan; 31(1):17-34. PubMed ID: 27522402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of EEG spatial-spectral-temporal signatures of errors: a comparative study of ICA-based and channel-based methods.
    Shou G; Ding L
    Brain Topogr; 2015 Jan; 28(1):47-61. PubMed ID: 25228153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using advance information in dynamic cognitive control: an ERP study of task-switching.
    Swainson R; Jackson SR; Jackson GM
    Brain Res; 2006 Aug; 1105(1):61-72. PubMed ID: 16626653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brain responses associated with different hierarchical effects on cues and targets during rule shifting.
    Han J; Dai Y; Xie L; Li F
    Biol Psychol; 2018 Apr; 134():52-63. PubMed ID: 29476839
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous EEG and pupillary evidence for post-error arousal during a speeded performance task.
    Compton RJ; Gearinger D; Wild H; Rette D; Heaton EC; Histon S; Thiel P; Jaskir M
    Eur J Neurosci; 2021 Jan; 53(2):543-555. PubMed ID: 32854136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Attentional orienting induced by arrows and eye-gaze compared with an endogenous cue.
    Brignani D; Guzzon D; Marzi CA; Miniussi C
    Neuropsychologia; 2009 Jan; 47(2):370-81. PubMed ID: 18926835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acute aerobic exercise enhances attentional modulation of somatosensory event-related potentials during a tactile discrimination task.
    Popovich C; Staines WR
    Behav Brain Res; 2015 Mar; 281():267-75. PubMed ID: 25549856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Stroop matching task presents conflict at both the response and nonresponse levels: an event-related potential and electromyography study.
    Caldas AL; Machado-Pinheiro W; Souza LB; Motta-Ribeiro GC; David IA
    Psychophysiology; 2012 Sep; 49(9):1215-24. PubMed ID: 22748126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cognitive control of attention in the human brain: insights from orienting attention to mental representations.
    Lepsien J; Nobre AC
    Brain Res; 2006 Aug; 1105(1):20-31. PubMed ID: 16729979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.