These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29023823)

  • 41. Task switching and novelty processing activate a common neural network for cognitive control.
    Barcelo F; Escera C; Corral MJ; Periáñez JA
    J Cogn Neurosci; 2006 Oct; 18(10):1734-48. PubMed ID: 17014377
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.
    Gonzalez-Rosa JJ; Inuggi A; Blasi V; Cursi M; Annovazzi P; Comi G; Falini A; Leocani L
    Int J Psychophysiol; 2013 Jul; 89(1):37-47. PubMed ID: 23664841
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Task confusion after switching revealed by reductions of error-related ERP components.
    Ikeda K; Hasegawa T
    Psychophysiology; 2012 Mar; 49(3):427-40. PubMed ID: 22091961
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neural activity associated with attention orienting triggered by implied action cues.
    Li K; Liu YJ; Qu F; Fu X
    Brain Res; 2016 Jul; 1642():353-363. PubMed ID: 27067186
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrophysiological indices of visual food cue-reactivity. Differences in obese, overweight and normal weight women.
    Hume DJ; Howells FM; Rauch HG; Kroff J; Lambert EV
    Appetite; 2015 Feb; 85():126-37. PubMed ID: 25464021
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrophysiological explorations of the cause and effect of inhibition of return in a cue-target paradigm.
    Tian Y; Klein RM; Satel J; Xu P; Yao D
    Brain Topogr; 2011 Jun; 24(2):164-82. PubMed ID: 21365310
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ERP evidence for selective drop in attentional costs in uncertain environments: challenging a purely premotor account of covert orienting of attention.
    Lasaponara S; Chica AB; Lecce F; Lupianez J; Doricchi F
    Neuropsychologia; 2011 Jul; 49(9):2648-57. PubMed ID: 21640737
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Perceptual load affects spatial and nonspatial visual selection processes: an event-related brain potential study.
    Barnhardt J; Ritter W; Gomes H
    Neuropsychologia; 2008; 46(7):2071-8. PubMed ID: 18355882
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dissociated stimulus and response conflict effect in the Stroop task: evidence from evoked brain potentials and brain oscillations.
    Zhao J; Liang WK; Juan CH; Wang L; Wang S; Zhu Z
    Biol Psychol; 2015 Jan; 104():130-8. PubMed ID: 25511611
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cognitive control after distraction: event-related brain potentials (ERPs) dissociate between different processes of attentional allocation.
    Berti S
    Psychophysiology; 2008 Jul; 45(4):608-20. PubMed ID: 18346043
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Covert orienting of attention in macaques. I. Effects of behavioral context.
    Bowman EM; Brown VJ; Kertzman C; Schwarz U; Robinson DL
    J Neurophysiol; 1993 Jul; 70(1):431-43. PubMed ID: 8360720
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Varieties of attention in neutral trials: linking RT to ERPs and EEG frequencies.
    Jongen EM; Smulders FT; van Breukelen GJ
    Psychophysiology; 2006 Jan; 43(1):113-25. PubMed ID: 16629691
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Attentional and intentional cueing in a Simon task: an EEG-based approach.
    Wascher E; Wolber M
    Psychol Res; 2004 Feb; 68(1):18-30. PubMed ID: 12750887
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Post-error slowing: an orienting account.
    Notebaert W; Houtman F; Opstal FV; Gevers W; Fias W; Verguts T
    Cognition; 2009 May; 111(2):275-9. PubMed ID: 19285310
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of the P3 and CNV components in voluntary and automatic temporal orienting: A high spatial-resolution ERP study.
    Mento G
    Neuropsychologia; 2017 Dec; 107():31-40. PubMed ID: 29109036
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dyslexics show a deviant lateralization of attentional control: a brain potential study.
    Wijers AA; Been PH; Romkes KS
    Neurosci Lett; 2005 Feb; 374(2):87-91. PubMed ID: 15644270
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced error-related negativity on flanker errors: error expectancy or error significance?
    Maier ME; di Pellegrino G; Steinhauser M
    Psychophysiology; 2012 Jul; 49(7):899-908. PubMed ID: 22524281
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Positive emotion modulates cognitive control: an event-related potentials study.
    Xue S; Cui J; Wang K; Zhang S; Qiu J; Luo Y
    Scand J Psychol; 2013 Apr; 54(2):82-8. PubMed ID: 23397988
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preparing for (valenced) action: The role of differential effort in the orthogonalized go/no-go task.
    Schevernels H; Bombeke K; Krebs RM; Boehler CN
    Psychophysiology; 2016 Feb; 53(2):186-97. PubMed ID: 26481327
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neural correlates of reconfiguration failure reveal the time course of task-set reconfiguration.
    Steinhauser M; Maier ME; Ernst B
    Neuropsychologia; 2017 Nov; 106():100-111. PubMed ID: 28939202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.