BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 29024340)

  • 1. Multiple marker abundance profiling: combining selected reaction monitoring and data-dependent acquisition for rapid estimation of organelle abundance in subcellular samples.
    Hooper CM; Stevens TJ; Saukkonen A; Castleden IR; Singh P; Mann GW; Fabre B; Ito J; Deery MJ; Lilley KS; Petzold CJ; Millar AH; Heazlewood JL; Parsons HT
    Plant J; 2017 Dec; 92(6):1202-1217. PubMed ID: 29024340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arabidopsis proteomics: a simple and standardizable workflow for quantitative proteome characterization.
    Rödiger A; Agne B; Baerenfaller K; Baginsky S
    Methods Mol Biol; 2014; 1072():275-88. PubMed ID: 24136529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations.
    Hooper CM; Castleden IR; Tanz SK; Aryamanesh N; Millar AH
    Nucleic Acids Res; 2017 Jan; 45(D1):D1064-D1074. PubMed ID: 27899614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant organelle proteomics.
    Lilley KS; Dupree P
    Curr Opin Plant Biol; 2007 Dec; 10(6):594-9. PubMed ID: 17913569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of trans-golgi network proteins in Arabidopsis thaliana root tissue.
    Groen AJ; Sancho-Andrés G; Breckels LM; Gatto L; Aniento F; Lilley KS
    J Proteome Res; 2014 Feb; 13(2):763-76. PubMed ID: 24344820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods of quantitative proteomics and their application to plant organelle characterization.
    Lilley KS; Dupree P
    J Exp Bot; 2006; 57(7):1493-9. PubMed ID: 16617121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of organelle discovery upon sub-cellular protein localisation.
    Breckels LM; Gatto L; Christoforou A; Groen AJ; Lilley KS; Trotter MW
    J Proteomics; 2013 Aug; 88():129-40. PubMed ID: 23523639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free protein quantification for plant Golgi protein localization and abundance.
    Nikolovski N; Shliaha PV; Gatto L; Dupree P; Lilley KS
    Plant Physiol; 2014 Oct; 166(2):1033-43. PubMed ID: 25122472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the Arabidopsis organelle proteome.
    Dunkley TP; Hester S; Shadforth IP; Runions J; Weimar T; Hanton SL; Griffin JL; Bessant C; Brandizzi F; Hawes C; Watson RB; Dupree P; Lilley KS
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6518-23. PubMed ID: 16618929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining experimental and predicted datasets for determination of the subcellular location of proteins in Arabidopsis.
    Heazlewood JL; Tonti-Filippini J; Verboom RE; Millar AH
    Plant Physiol; 2005 Oct; 139(2):598-609. PubMed ID: 16219920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics.
    Fuchs P; Rugen N; Carrie C; Elsässer M; Finkemeier I; Giese J; Hildebrandt TM; Kühn K; Maurino VG; Ruberti C; Schallenberg-Rüdinger M; Steinbeck J; Braun HP; Eubel H; Meyer EH; Müller-Schüssele SJ; Schwarzländer M
    Plant J; 2020 Jan; 101(2):420-441. PubMed ID: 31520498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants.
    Nelson BK; Cai X; Nebenführ A
    Plant J; 2007 Sep; 51(6):1126-36. PubMed ID: 17666025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of organelle proteins by isotope tagging (LOPIT).
    Dunkley TP; Watson R; Griffin JL; Dupree P; Lilley KS
    Mol Cell Proteomics; 2004 Nov; 3(11):1128-34. PubMed ID: 15295017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of isotope-coded affinity tags (ICAT) to study organelle proteomes in Arabidopsis thaliana.
    Dunkley TP; Dupree P; Watson RB; Lilley KS
    Biochem Soc Trans; 2004 Jun; 32(Pt3):520-3. PubMed ID: 15157176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolving subcellular plant metabolism.
    Fürtauer L; Küstner L; Weckwerth W; Heyer AG; Nägele T
    Plant J; 2019 Nov; 100(3):438-455. PubMed ID: 31361942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pep2pro: a new tool for comprehensive proteome data analysis to reveal information about organ-specific proteomes in Arabidopsis thaliana.
    Baerenfaller K; Hirsch-Hoffmann M; Svozil J; Hull R; Russenberger D; Bischof S; Lu Q; Gruissem W; Baginsky S
    Integr Biol (Camb); 2011 Mar; 3(3):225-37. PubMed ID: 21264403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical proteomics for subcellular proteome analysis.
    Zhu H; Tamura T; Hamachi I
    Curr Opin Chem Biol; 2019 Feb; 48():1-7. PubMed ID: 30170243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloroplast Isolation and Enrichment of Low-Abundance Proteins by Affinity Chromatography for Identification in Complex Proteomes.
    Bayer RG; Stael S; Teige M
    Methods Mol Biol; 2021; 2261():535-547. PubMed ID: 33421013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics of Saccharomyces cerevisiae Organelles.
    Wiederhold E; Veenhoff LM; Poolman B; Slotboom DJ
    Mol Cell Proteomics; 2010 Mar; 9(3):431-45. PubMed ID: 19955081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in
    Mair A; Xu SL; Branon TC; Ting AY; Bergmann DC
    Elife; 2019 Sep; 8():. PubMed ID: 31535972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.