These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 29024532)

  • 21. Nanoscale Engineering of Heterostructured Anode Materials for Boosting Lithium-Ion Storage.
    Chen G; Yan L; Luo H; Guo S
    Adv Mater; 2016 Sep; 28(35):7580-602. PubMed ID: 27302769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atomistic Mechanisms of Mg Insertion Reactions in Group XIV Anodes for Mg-Ion Batteries.
    Wang M; Yuwono JA; Vasudevan V; Birbilis N; Medhekar NV
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):774-783. PubMed ID: 30525421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries.
    McDowell MT; Lee SW; Nix WD; Cui Y
    Adv Mater; 2013 Sep; 25(36):4966-85. PubMed ID: 24038172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries.
    Chae S; Choi SH; Kim N; Sung J; Cho J
    Angew Chem Int Ed Engl; 2020 Jan; 59(1):110-135. PubMed ID: 30887635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interface Engineering to Boost Thermal Safety of Microsized Silicon Anodes in Lithium-Ion Batteries.
    Liu Q; Meng T; Yu L; Guo S; Hu Y; Liu Z; Hu X
    Small Methods; 2022 Jul; 6(7):e2200380. PubMed ID: 35652156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoengineering to achieve high efficiency practical lithium-sulfur batteries.
    Cha E; Patel M; Bhoyate S; Prasad V; Choi W
    Nanoscale Horiz; 2020 May; 5(5):808-831. PubMed ID: 32159194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uniform Distribution of Alloying/Dealloying Stress for High Structural Stability of an Al Anode in High-Areal-Density Lithium-Ion Batteries.
    Zhang M; Xiang L; Galluzzi M; Jiang C; Zhang S; Li J; Tang Y
    Adv Mater; 2019 May; 31(18):e1900826. PubMed ID: 30907036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries.
    Zhang Y; Du N; Yang D
    Nanoscale; 2019 Nov; 11(41):19086-19104. PubMed ID: 31538999
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alloying Reaction Confinement Enables High-Capacity and Stable Anodes for Lithium-Ion Batteries.
    Fang S; Shen L; Li S; Kim GT; Bresser D; Zhang H; Zhang X; Maier J; Passerini S
    ACS Nano; 2019 Aug; 13(8):9511-9519. PubMed ID: 31335123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coordination compounds in lithium storage and lithium-ion transport.
    Liu J; Xie D; Shi W; Cheng P
    Chem Soc Rev; 2020 Mar; 49(6):1624-1642. PubMed ID: 32096508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanostructured silicon anodes for lithium ion rechargeable batteries.
    Teki R; Datta MK; Krishnan R; Parker TC; Lu TM; Kumta PN; Koratkar N
    Small; 2009 Oct; 5(20):2236-42. PubMed ID: 19739146
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Situ Synthesis and Characterization of Ge Embedded Electrospun Carbon Nanostructures as High Performance Anode Material for Lithium-Ion Batteries.
    Lee YW; Kim DM; Kim SJ; Kim MC; Choe HS; Lee KH; Sohn JI; Cha SN; Kim JM; Park KW
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7022-9. PubMed ID: 26895137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Advances in Silicon-Based Electrodes: From Fundamental Research toward Practical Applications.
    Ge M; Cao C; Biesold GM; Sewell CD; Hao SM; Huang J; Zhang W; Lai Y; Lin Z
    Adv Mater; 2021 Apr; 33(16):e2004577. PubMed ID: 33686697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multidimensional Germanium-Based Materials as Anodes for Lithium-Ion Batteries.
    Qin J; Cao M
    Chem Asian J; 2016 Apr; 11(8):1169-81. PubMed ID: 26990878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Effects of Trace Sb and Zn Additions on Cu
    Tan XF; Yong AXB; Gu Q; Yang W; Aso K; Matsumura S; McDonald SD; Nogita K
    J Nanosci Nanotechnol; 2020 Aug; 20(8):5182-5191. PubMed ID: 32126719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomass-Based Silicon and Carbon for Lithium-Ion Battery Anodes.
    Muraleedharan Pillai M; Kalidas N; Zhao X; Lehto VP
    Front Chem; 2022; 10():882081. PubMed ID: 35601553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Imaging the Surface/Interface Morphologies Evolution of Silicon Anodes Using
    Yang D; Ng YXA; Zhang K; Chang Q; Chen J; Liang T; Cheng S; Sun Y; Shen W; Ang EH; Xiang H; Song X
    ACS Appl Mater Interfaces; 2023 May; 15(17):20583-20602. PubMed ID: 37087764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity.
    Liu Y; Zhou G; Liu K; Cui Y
    Acc Chem Res; 2017 Dec; 50(12):2895-2905. PubMed ID: 29206446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advances in the Application of Silicon and Germanium Nanowires for High-Performance Lithium-Ion Batteries.
    Kennedy T; Brandon M; Ryan KM
    Adv Mater; 2016 Jul; 28(27):5696-704. PubMed ID: 26855084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.