These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29024539)

  • 1. Unprecedented Sensitivity in a Probe for Monitoring Cathepsin B: Chemiluminescence Microscopy Cell-Imaging of a Natively Expressed Enzyme.
    Roth-Konforti ME; Bauer CR; Shabat D
    Angew Chem Int Ed Engl; 2017 Dec; 56(49):15633-15638. PubMed ID: 29024539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and evaluation of new NIR-fluorescent probes for cathepsin B: ICT versus FRET as a turn-ON mode-of-action.
    Kisin-Finfer E; Ferber S; Blau R; Satchi-Fainaro R; Shabat D
    Bioorg Med Chem Lett; 2014 Jun; 24(11):2453-8. PubMed ID: 24767838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistent Chemiluminescent Glow of Phenoxy-dioxetane Luminophore Enables Unique CRET-Based Detection of Proteases.
    Hananya N; Press O; Das A; Scomparin A; Satchi-Fainaro R; Sagi I; Shabat D
    Chemistry; 2019 Nov; 25(64):14679-14687. PubMed ID: 31495978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and synthesis of fluorogenic substrate-based probes for detecting Cathepsin B activity.
    Wang S; Vigliarolo BG; Chowdhury MA; Nyarko JNK; Mousseau DD; Phenix CP
    Bioorg Chem; 2019 Nov; 92():103194. PubMed ID: 31493706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive Chemiluminescent Detection of Cathepsin B: Insights into the New Frontier of Chemiluminescent Imaging.
    Ryan LS; Lippert AR
    Angew Chem Int Ed Engl; 2018 Jan; 57(3):622-624. PubMed ID: 29194881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ortho-Chlorination of phenoxy 1,2-dioxetane yields superior chemiluminescent probes for in vitro and in vivo imaging.
    Eilon-Shaffer T; Roth-Konforti M; Eldar-Boock A; Satchi-Fainaro R; Shabat D
    Org Biomol Chem; 2018 Mar; 16(10):1708-1712. PubMed ID: 29451576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opening a Gateway for Chemiluminescence Cell Imaging: Distinctive Methodology for Design of Bright Chemiluminescent Dioxetane Probes.
    Green O; Eilon T; Hananya N; Gutkin S; Bauer CR; Shabat D
    ACS Cent Sci; 2017 Apr; 3(4):349-358. PubMed ID: 28470053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Highly Efficient Chemiluminescence Probe for the Detection of Singlet Oxygen in Living Cells.
    Hananya N; Green O; Blau R; Satchi-Fainaro R; Shabat D
    Angew Chem Int Ed Engl; 2017 Sep; 56(39):11793-11796. PubMed ID: 28749072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remarkable Enhancement of Chemiluminescent Signal by Dioxetane-Fluorophore Conjugates: Turn-ON Chemiluminescence Probes with Color Modulation for Sensing and Imaging.
    Hananya N; Eldar Boock A; Bauer CR; Satchi-Fainaro R; Shabat D
    J Am Chem Soc; 2016 Oct; 138(40):13438-13446. PubMed ID: 27652602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The emergence of aqueous chemiluminescence: new promising class of phenoxy 1,2-dioxetane luminophores.
    Gnaim S; Green O; Shabat D
    Chem Commun (Camb); 2018 Feb; 54(17):2073-2085. PubMed ID: 29423487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Powerful Chemiluminescence Probe for Rapid Detection of Prostate Specific Antigen Proteolytic Activity: Forensic Identification of Human Semen.
    Gutkin S; Green O; Raviv G; Shabat D; Portnoy O
    Bioconjug Chem; 2020 Nov; 31(11):2488-2493. PubMed ID: 33090770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catheter-based in vivo imaging of enzyme activity and gene expression: feasibility study in mice.
    Funovics MA; Weissleder R; Mahmood U
    Radiology; 2004 Jun; 231(3):659-66. PubMed ID: 15163807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysosome-Targeting Fluorogenic Probe for Cathepsin B Imaging in Living Cells.
    Wang Y; Li J; Feng L; Yu J; Zhang Y; Ye D; Chen HY
    Anal Chem; 2016 Dec; 88(24):12403-12410. PubMed ID: 28193055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid chemiexcitation of phenoxy-dioxetane luminophores yields ultrasensitive chemiluminescence assays.
    Hananya N; Reid JP; Green O; Sigman MS; Shabat D
    Chem Sci; 2019 Feb; 10(5):1380-1385. PubMed ID: 30809354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Chemiluminescent Probes with a Very Long Near-Infrared Emission Wavelength for in Vivo Imaging.
    Huang J; Jiang Y; Li J; Huang J; Pu K
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):3999-4003. PubMed ID: 33119955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Functional Chemiluminescent Probe for in Vivo Imaging of Natural Killer Cell Activity Against Tumours.
    Scott JI; Gutkin S; Green O; Thompson EJ; Kitamura T; Shabat D; Vendrell M
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5699-5703. PubMed ID: 33300671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observing proteases in living cells.
    Moin K; Demchik L; Mai J; Duessing J; Peters C; Sloane BF
    Adv Exp Med Biol; 2000; 477():391-401. PubMed ID: 10849765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Holding-Oriented versus Gating-Oriented Live-Cell Distinction: Highlighting the Role of Transporters in Cell Imaging Probe Development.
    Choi YK; Kim JJ; Chang YT
    Acc Chem Res; 2019 Nov; 52(11):3097-3107. PubMed ID: 31265234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual Chemiexcitation by a Unique Dioxetane Scaffold Gated by an OR Logic Set of Triggers.
    David M; Jaber Q; Fridman M; Shabat D
    Chemistry; 2023 May; 29(25):e202300422. PubMed ID: 36779696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prodrug-inspired probes selective to cathepsin B over other cysteine cathepsins.
    Chowdhury MA; Moya IA; Bhilocha S; McMillan CC; Vigliarolo BG; Zehbe I; Phenix CP
    J Med Chem; 2014 Jul; 57(14):6092-104. PubMed ID: 24940640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.