These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 29024707)
1. Gene expression profiling of brain metastatic cell from triple negative breast cancer: Understanding the molecular events. Zhou L; Gao HF; Liu DS; Feng JY; Gao DD; Xia W Gene; 2018 Jan; 640():21-27. PubMed ID: 29024707 [TBL] [Abstract][Full Text] [Related]
2. Screening and identification of potential biomarkers in triple-negative breast cancer by integrated analysis. Guo J; Gong G; Zhang B Oncol Rep; 2017 Oct; 38(4):2219-2228. PubMed ID: 28849078 [TBL] [Abstract][Full Text] [Related]
3. Brain-derived neurotrophic factor (BDNF) -TrKB signaling modulates cancer-endothelial cells interaction and affects the outcomes of triple negative breast cancer. Tsai YF; Tseng LM; Hsu CY; Yang MH; Chiu JH; Shyr YM PLoS One; 2017; 12(6):e0178173. PubMed ID: 28604807 [TBL] [Abstract][Full Text] [Related]
4. Agonists and knockdown of estrogen receptor β differentially affect invasion of triple-negative breast cancer cells in vitro. Schüler-Toprak S; Häring J; Inwald EC; Moehle C; Ortmann O; Treeck O BMC Cancer; 2016 Dec; 16(1):951. PubMed ID: 28003019 [TBL] [Abstract][Full Text] [Related]
5. MicroRNA-455-3p promotes invasion and migration in triple negative breast cancer by targeting tumor suppressor EI24. Li Z; Meng Q; Pan A; Wu X; Cui J; Wang Y; Li L Oncotarget; 2017 Mar; 8(12):19455-19466. PubMed ID: 28038450 [TBL] [Abstract][Full Text] [Related]
6. Molecular Features of Triple Negative Breast Cancer: Microarray Evidence and Further Integrated Analysis. He J; Yang J; Chen W; Wu H; Yuan Z; Wang K; Li G; Sun J; Yu L PLoS One; 2015; 10(6):e0129842. PubMed ID: 26103053 [TBL] [Abstract][Full Text] [Related]
7. Loss of RAB1B promotes triple-negative breast cancer metastasis by activating TGF-β/SMAD signaling. Jiang HL; Sun HF; Gao SP; Li LD; Hu X; Wu J; Jin W Oncotarget; 2015 Jun; 6(18):16352-65. PubMed ID: 25970785 [TBL] [Abstract][Full Text] [Related]
8. Integrated analysis of differentially expressed genes and pathways in triple‑negative breast cancer. Peng C; Ma W; Xia W; Zheng W Mol Med Rep; 2017 Mar; 15(3):1087-1094. PubMed ID: 28075450 [TBL] [Abstract][Full Text] [Related]
9. Integrated network analysis and machine learning approach for the identification of key genes of triple-negative breast cancer. Naorem LD; Muthaiyan M; Venkatesan A J Cell Biochem; 2019 Apr; 120(4):6154-6167. PubMed ID: 30302816 [TBL] [Abstract][Full Text] [Related]
10. Brain-metastatic triple-negative breast cancer cells regain growth ability by altering gene expression patterns. Choi YK; Woo SM; Cho SG; Moon HE; Yun YJ; Kim JW; Noh DY; Jang BH; Shin YC; Kim JH; Shin HD; Paek SH; Ko SG Cancer Genomics Proteomics; 2013; 10(6):265-75. PubMed ID: 24336635 [TBL] [Abstract][Full Text] [Related]
11. Co-expression networks revealed potential core lncRNAs in the triple-negative breast cancer. Yang F; Liu YH; Dong SY; Yao ZH; Lv L; Ma RM; Dai XX; Wang J; Zhang XH; Wang OC Gene; 2016 Oct; 591(2):471-7. PubMed ID: 27380926 [TBL] [Abstract][Full Text] [Related]
12. Global Analysis of miRNA-mRNA Interaction Network in Breast Cancer with Brain Metastasis. Li Z; Peng Z; Gu S; Zheng J; Feng D; Qin Q; He J Anticancer Res; 2017 Aug; 37(8):4455-4468. PubMed ID: 28739740 [TBL] [Abstract][Full Text] [Related]
13. Gene regulatory pattern analysis reveals essential role of core transcriptional factors' activation in triple-negative breast cancer. Min L; Zhang C; Qu L; Huang J; Jiang L; Liu J; Pinello L; Yuan GC; Shou C Oncotarget; 2017 Mar; 8(13):21938-21953. PubMed ID: 28423538 [TBL] [Abstract][Full Text] [Related]
14. Brain Metastasis Prediction by Transcriptomic Profiling in Triple-Negative Breast Cancer. Duchnowska R; Jarząb M; Żebracka-Gala J; Matkowski R; Kowalczyk A; Radecka B; Kowalska M; Pfeifer A; Foszczyńska-Kłoda M; Musolino A; Czartoryska-Arłukowicz B; Litwiniuk M; Surus-Hyla A; Szabłowska-Siwik S; Karczmarek-Borowska B; Dębska-Szmich S; Głodek-Sutek B; Sosińska-Mielcarek K; Chmielowska E; Kalinka-Warzocha E; Olszewski WP; Patera J; Żawrocki A; Pliszka A; Tyszkiewicz T; Rusinek D; Oczko-Wojciechowska M; Jassem J; Biernat W; Clin Breast Cancer; 2017 Apr; 17(2):e65-e75. PubMed ID: 27692773 [TBL] [Abstract][Full Text] [Related]
15. Aberrant KDM5B expression promotes aggressive breast cancer through MALAT1 overexpression and downregulation of hsa-miR-448. Bamodu OA; Huang WC; Lee WH; Wu A; Wang LS; Hsiao M; Yeh CT; Chao TY BMC Cancer; 2016 Feb; 16():160. PubMed ID: 26917489 [TBL] [Abstract][Full Text] [Related]
16. Novel genes associated with lymph node metastasis in triple negative breast cancer. Mathe A; Wong-Brown M; Morten B; Forbes JF; Braye SG; Avery-Kiejda KA; Scott RJ Sci Rep; 2015 Nov; 5():15832. PubMed ID: 26537449 [TBL] [Abstract][Full Text] [Related]
17. Integrated analysis of the potential roles of miRNA‑mRNA networks in triple negative breast cancer. Zhu H; Dai M; Chen X; Chen X; Qin S; Dai S Mol Med Rep; 2017 Aug; 16(2):1139-1146. PubMed ID: 28627677 [TBL] [Abstract][Full Text] [Related]
18. MiR-145 promotes TNF-α-induced apoptosis by facilitating the formation of RIP1-FADDcaspase-8 complex in triple-negative breast cancer. Zheng M; Wu Z; Wu A; Huang Z; He N; Xie X Tumour Biol; 2016 Jul; 37(7):8599-607. PubMed ID: 26733177 [TBL] [Abstract][Full Text] [Related]
19. Depletion of the aryl hydrocarbon receptor in MDA-MB-231 human breast cancer cells altered the expression of genes in key regulatory pathways of cancer. Goode G; Pratap S; Eltom SE PLoS One; 2014; 9(6):e100103. PubMed ID: 24932473 [TBL] [Abstract][Full Text] [Related]
20. Genomic insights into triple-negative and HER2-positive breast cancers using isogenic model systems. Mudvari P; Ohshiro K; Nair V; Horvath A; Kumar R PLoS One; 2013; 8(9):e74993. PubMed ID: 24086418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]