BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 29024759)

  • 1. Specificity of plant membrane trafficking - ARFs, regulators and coat proteins.
    Singh MK; Jürgens G
    Semin Cell Dev Biol; 2018 Aug; 80():85-93. PubMed ID: 29024759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single class of ARF GTPase activated by several pathway-specific ARF-GEFs regulates essential membrane traffic in Arabidopsis.
    Singh MK; Richter S; Beckmann H; Kientz M; Stierhof YD; Anders N; Fäßler F; Nielsen M; Knöll C; Thomann A; Franz-Wachtel M; Macek B; Skriver K; Pimpl P; Jürgens G
    PLoS Genet; 2018 Nov; 14(11):e1007795. PubMed ID: 30439956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reduced ARF regulatory system in Giardia intestinalis pre-dates the transition to parasitism in the lineage Fornicata.
    Pipaliya SV; Thompson LA; Dacks JB
    Int J Parasitol; 2021 Sep; 51(10):825-839. PubMed ID: 33848497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ADP-ribosylation factor machinery mediates endocytosis in plant cells.
    Naramoto S; Kleine-Vehn J; Robert S; Fujimoto M; Dainobu T; Paciorek T; Ueda T; Nakano A; Van Montagu MC; Fukuda H; Friml J
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21890-5. PubMed ID: 21118984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulating the large Sec7 ARF guanine nucleotide exchange factors: the when, where and how of activation.
    Wright J; Kahn RA; Sztul E
    Cell Mol Life Sci; 2014 Sep; 71(18):3419-38. PubMed ID: 24728583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rab regulation by GEFs and GAPs during membrane traffic.
    Lamber EP; Siedenburg AC; Barr FA
    Curr Opin Cell Biol; 2019 Aug; 59():34-39. PubMed ID: 30981180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordinated Activation of ARF1 GTPases by ARF-GEF GNOM Dimers Is Essential for Vesicle Trafficking in Arabidopsis.
    Brumm S; Singh MK; Nielsen ME; Richter S; Beckmann H; Stierhof YD; Fischer AM; Kumaran M; Sundaresan V; Jürgens G
    Plant Cell; 2020 Aug; 32(8):2491-2507. PubMed ID: 32487565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of COPI vesicles and regulation of vesicle turnover.
    Taylor RJ; Tagiltsev G; Briggs JAG
    FEBS Lett; 2023 Mar; 597(6):819-835. PubMed ID: 36513395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. COPI-mediated blood meal digestion in vector mosquitoes is independent of midgut ARF-GEF and ARF-GAP regulatory activities.
    Isoe J; Stover W; Miesfeld RB; Miesfeld RL
    Insect Biochem Mol Biol; 2013 Aug; 43(8):732-9. PubMed ID: 23727611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large ARF guanine nucleotide exchange factors in membrane trafficking.
    Anders N; Jürgens G
    Cell Mol Life Sci; 2008 Nov; 65(21):3433-45. PubMed ID: 18604628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of ADP-ribosylation factor and SAR1 in vesicular trafficking in plants.
    Memon AR
    Biochim Biophys Acta; 2004 Jul; 1664(1):9-30. PubMed ID: 15238254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ARF family G proteins and their regulators: roles in membrane transport, development and disease.
    Donaldson JG; Jackson CL
    Nat Rev Mol Cell Biol; 2011 Jun; 12(6):362-75. PubMed ID: 21587297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arfs at a glance.
    Jackson CL; Bouvet S
    J Cell Sci; 2014 Oct; 127(Pt 19):4103-9. PubMed ID: 25146395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Inhibitor Endosidin 4 Targets SEC7 Domain-Type ARF GTPase Exchange Factors and Interferes with Subcellular Trafficking in Eukaryotes.
    Kania U; Nodzyński T; Lu Q; Hicks GR; Nerinckx W; Mishev K; Peurois F; Cherfils J; De Rycke R; Grones P; Robert S; Russinova E; Friml J
    Plant Cell; 2018 Oct; 30(10):2553-2572. PubMed ID: 30018156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonselective Chemical Inhibition of Sec7 Domain-Containing ARF GTPase Exchange Factors.
    Mishev K; Lu Q; Denoo B; Peurois F; Dejonghe W; Hullaert J; De Rycke R; Boeren S; Bretou M; De Munck S; Sharma I; Goodman K; Kalinowska K; Storme V; Nguyen LSL; Drozdzecki A; Martins S; Nerinckx W; Audenaert D; Vert G; Madder A; Otegui MS; Isono E; Savvides SN; Annaert W; De Vries S; Cherfils J; Winne J; Russinova E
    Plant Cell; 2018 Oct; 30(10):2573-2593. PubMed ID: 30018157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rab35: GEFs, GAPs and effectors.
    Chaineau M; Ioannou MS; McPherson PS
    Traffic; 2013 Nov; 14(11):1109-17. PubMed ID: 23905989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rab GTPases: master regulators that establish the secretory and endocytic pathways.
    Pfeffer SR
    Mol Biol Cell; 2017 Mar; 28(6):712-715. PubMed ID: 28292916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The integration of autophagy and cellular trafficking pathways via RAB GAPs.
    Kern A; Dikic I; Behl C
    Autophagy; 2015; 11(12):2393-7. PubMed ID: 26565612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The yeast Arf-GAP Glo3p is required for the endocytic recycling of cell surface proteins.
    Kawada D; Kobayashi H; Tomita T; Nakata E; Nagano M; Siekhaus DE; Toshima JY; Toshima J
    Biochim Biophys Acta; 2015 Jan; 1853(1):144-56. PubMed ID: 25409928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arf GAPs and membrane traffic.
    Nie Z; Randazzo PA
    J Cell Sci; 2006 Apr; 119(Pt 7):1203-11. PubMed ID: 16554436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.