These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29024858)

  • 1. Motion modes of two self-propelled camphor boats on the surface of a surfactant-containing solution.
    Karasawa Y; Nomoto T; Chiari L; Toyota T; Fujinami M
    J Colloid Interface Sci; 2018 Feb; 511():184-192. PubMed ID: 29024858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Investigation of the Self-Propelled Motion of a Sodium Oleate Tablet and Boat at an Oil-Water Interface.
    Watahiki Y; Nomoto T; Chiari L; Toyota T; Fujinami M
    Langmuir; 2018 May; 34(19):5487-5494. PubMed ID: 29693399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative estimation of the parameters for self-motion driven by difference in surface tension.
    Suematsu NJ; Sasaki T; Nakata S; Kitahata H
    Langmuir; 2014 Jul; 30(27):8101-8. PubMed ID: 24934964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-Resolved Measurements of Interfacial Tension and Flow Speed of the Inclined Water Surface around a Self-propelled Camphor Boat by the Quasi-elastic Laser Scattering Method.
    Nomoto T; Marumo M; Chiari L; Toyota T; Fujinami M
    J Phys Chem B; 2023 Mar; 127(12):2863-2871. PubMed ID: 36921258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasi-elastic laser scattering for measuring inhomogeneous interfacial tension in non-equilibrium phenomena with convective flows.
    Nomoto T; Toyota T; Fujinami M
    Anal Sci; 2014; 30(7):707-16. PubMed ID: 25007928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced model of a reaction-diffusion system for the collective motion of camphor boats.
    Ikeda K; Ei SI; Nagayama M; Okamoto M; Tomoeda A
    Phys Rev E; 2019 Jun; 99(6-1):062208. PubMed ID: 31330577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective motion of symmetric camphor papers in an annular water channel.
    Ikura YS; Heisler E; Awazu A; Nishimori H; Nakata S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012911. PubMed ID: 23944542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collective behavior of inanimate boats.
    Suematsu NJ; Nakata S; Awazu A; Nishimori H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056210. PubMed ID: 20866310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronized sailing of two camphor boats in polygonal chambers.
    Nakata S; Doi Y; Kitahata H
    J Phys Chem B; 2005 Feb; 109(5):1798-802. PubMed ID: 16851161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristic oscillatory motion of a camphor boat sensitive to physicochemical environment.
    Nakata S; Yoshii M; Matsuda Y; Suematsu NJ
    Chaos; 2015 Jun; 25(6):064610. PubMed ID: 26117135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillatory Motion of a Camphor Object on a Surfactant Solution.
    Xu Y; Takayama N; Er H; Nakata S
    J Phys Chem B; 2021 Feb; 125(6):1674-1679. PubMed ID: 33508193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New types of complex motion of a simple camphor boat.
    Löffler RJG; Roliński T; Kitahata H; Koyano Y; Górecki J
    Phys Chem Chem Phys; 2023 Mar; 25(11):7794-7804. PubMed ID: 36857664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant-loaded capsules as Marangoni microswimmers at the air-water interface: Symmetry breaking and spontaneous propulsion by surfactant diffusion and advection.
    Ender H; Froin AK; Rehage H; Kierfeld J
    Eur Phys J E Soft Matter; 2021 Mar; 44(2):21. PubMed ID: 33686547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristic self-motion of a camphor boat sensitive to ester vapor.
    Nakata S; Matsuo K
    Langmuir; 2005 Feb; 21(3):982-4. PubMed ID: 15667178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into characteristic motions and negative chemotaxis of the inanimate motor sensitive to sodium chloride.
    Xu Y; Kang J; Sun M; Shan J; Guo W; Zhang Q
    J Colloid Interface Sci; 2024 Apr; 660():953-960. PubMed ID: 38281476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Period of Oscillatory Motion of a Camphor Boat Determined by the Dissolution and Diffusion of Camphor Molecules.
    Tenno R; Gunjima Y; Yoshii M; Kitahata H; Gorecki J; Suematsu NJ; Nakata S
    J Phys Chem B; 2018 Mar; 122(9):2610-2615. PubMed ID: 29405712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-motion of a camphor disk on an aqueous phase depending on the alkyl chain length of sulfate surfactants.
    Nakata S; Murakami M
    Langmuir; 2010 Feb; 26(4):2414-7. PubMed ID: 19877701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From diffusive mass transfer in Stokes flow to low Reynolds number Marangoni boats.
    Ender H; Kierfeld J
    Eur Phys J E Soft Matter; 2021 Feb; 44(1):4. PubMed ID: 33580288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternate Route Selection of Self-Propelled Filter Papers Impregnated with Camphor for Two-Branched Water Channels.
    Fujita R; Matsufuji T; Matsuo M; Nakata S
    Langmuir; 2021 Jun; 37(23):7039-7042. PubMed ID: 34048652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swarming of self-propelled camphor boats.
    Heisler E; Suematsu NJ; Awazu A; Nishimori H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):055201. PubMed ID: 23004811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.