These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 29024871)

  • 21. Sleep-Wake Neurochemistry.
    Holst SC; Landolt HP
    Sleep Med Clin; 2018 Jun; 13(2):137-146. PubMed ID: 29759265
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synaptic plasticity modulates autonomous transitions between waking and sleep states: insights from a Morris-Lecar model.
    Ciszak M; Bellesi M
    Chaos; 2011 Dec; 21(4):043119. PubMed ID: 22225356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Waking and sleeping in the rat made obese through a high-fat hypercaloric diet.
    Luppi M; Cerri M; Martelli D; Tupone D; Del Vecchio F; Di Cristoforo A; Perez E; Zamboni G; Amici R
    Behav Brain Res; 2014 Jan; 258():145-52. PubMed ID: 24149066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brain Circuitry Controlling Sleep and Wakefulness.
    Horner RL; Peever JH
    Continuum (Minneap Minn); 2017 Aug; 23(4, Sleep Neurology):955-972. PubMed ID: 28777170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell adhesion molecules and sleep.
    O'Callaghan EK; Ballester Roig MN; Mongrain V
    Neurosci Res; 2017 Mar; 116():29-38. PubMed ID: 27884699
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The aging brain, neuroinflammatory signaling and sleep-wake regulation.
    Bertini G; Colavito V; Tognoli C; Seke Etet PF; Bentivoglio M
    Ital J Anat Embryol; 2010; 115(1-2):31-8. PubMed ID: 21072987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sleep-waking discharge profiles of median preoptic and surrounding neurons in mice.
    Sakai K
    Neuroscience; 2011 May; 182():144-61. PubMed ID: 21396987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Sleep-wake cycle and memory consolidation].
    Baratti CM; Boccia MM; Blake MG; Acosta GB
    Vertex; 2007; 18(74):300-4. PubMed ID: 18219403
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From necessity to sufficiency in memory research: when sleep helps to understand wake experiences.
    Lacroix MM; De Lavilléon G; Benchenane K
    Curr Opin Neurobiol; 2015 Dec; 35():156-62. PubMed ID: 26378965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Oscillations in the oxidation-reduction potential of the brain tissue in rats developing during wakefulness and slow-wave sleep].
    Shvets-Ténéta-Guriĭ TB; Troshin GI; Dubinin AG; Novikova MR
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2000; 50(2):261-73. PubMed ID: 10822845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A quartet neural system model orchestrating sleep and wakefulness mechanisms.
    Tamakawa Y; Karashima A; Koyama Y; Katayama N; Nakao M
    J Neurophysiol; 2006 Apr; 95(4):2055-69. PubMed ID: 16282204
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Dynamics of neuronal activity in the lateral preoptic area of hypothalamus in the course of sleep-waking cycle].
    Suntsova NV; Dergacheva OIu
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2002; 52(5):592-601. PubMed ID: 12449838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit.
    Shiromani PJ; Peever JH
    Sleep; 2017 Apr; 40(4):. PubMed ID: 28329204
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Major neurotransmitters involved in the regulation of sleep-wake cycle].
    Franco-Pérez J; Ballesteros-Zebadúa P; Custodio V; Paz C
    Rev Invest Clin; 2012; 64(2):182-91. PubMed ID: 22991780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sleep-wake related discharge properties of basal forebrain neurons recorded with micropipettes in head-fixed rats.
    Lee MG; Manns ID; Alonso A; Jones BE
    J Neurophysiol; 2004 Aug; 92(2):1182-98. PubMed ID: 15028746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Release of biogenic amines in the brain during sleep-wakefulness cycle].
    Mochizuki T; Yamatodani A
    Nihon Rinsho; 1998 Feb; 56(2):290-5. PubMed ID: 9503824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking.
    Monti JM; Jantos H
    Prog Brain Res; 2008; 172():625-46. PubMed ID: 18772053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interleukin-1beta modulates state-dependent discharge activity of preoptic area and basal forebrain neurons: role in sleep regulation.
    Alam MN; McGinty D; Bashir T; Kumar S; Imeri L; Opp MR; Szymusiak R
    Eur J Neurosci; 2004 Jul; 20(1):207-16. PubMed ID: 15245493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chloramphenicol decreases brain glucose utilization and modifies the sleep-wake cycle architecture in rats.
    Moulin-Sallanon M; Millet P; Rousset C; Zimmer L; Debilly G; Petit JM; Cespuglio R; Magistretti P; Ibáñez V
    J Neurochem; 2005 Jun; 93(6):1623-32. PubMed ID: 15935079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in the composition of brain interstitial ions control the sleep-wake cycle.
    Ding F; O'Donnell J; Xu Q; Kang N; Goldman N; Nedergaard M
    Science; 2016 Apr; 352(6285):550-5. PubMed ID: 27126038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.