These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29025409)

  • 81. Multi-omic and physiologic approach to understand Lotus japonicus response upon exposure to 3,4 dimethylpyrazole phosphate nitrification inhibitor.
    Rodrigues JM; Lasa B; Betti M; Fernández-Irigoyen J; Santamaría E; González-Murua C; Aparicio-Tejo PM; Marino D
    Sci Total Environ; 2019 Apr; 660():1201-1209. PubMed ID: 30743915
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Overexpression of the Starch Phosphorylase-Like Gene (PHO3) in Lotus japonicus has a Profound Effect on the Growth of Plants and Reduction of Transitory Starch Accumulation.
    Qin S; Tang Y; Chen Y; Wu P; Li M; Wu G; Jiang H
    Front Plant Sci; 2016; 7():1315. PubMed ID: 27630651
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Construction of a network describing asparagine metabolism in plants and its application to the identification of genes affecting asparagine metabolism in wheat under drought and nutritional stress.
    Curtis TY; Bo V; Tucker A; Halford NG
    Food Energy Secur; 2018 Feb; 7(1):e00126. PubMed ID: 29938110
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Salt Stress-Related Mechanisms in Leaves of the Wild Barley
    Barqawi AA; Abulfaraj AA
    Life (Basel); 2023 Jun; 13(7):. PubMed ID: 37511829
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Two routes for asparagine metabolism in Pisum sativum L.
    Ireland RJ; Joy KW
    Planta; 1981 Mar; 151(3):289-92. PubMed ID: 24301856
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Photorespiration mutants of Arabidopsis thaliana deficient in serine-glyoxylate aminotransferase activity.
    Somerville CR; Ogren WL
    Proc Natl Acad Sci U S A; 1980 May; 77(5):2684-7. PubMed ID: 16592821
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Three genes showing distinct regulatory patterns encode the asparagine synthetase of sunflower (Helianthus annuus).
    Herrera-Rodríguez MB; Carrasco-Ballesteros S; Maldonado JM; Pineda M; Aguilar M; Pérez-Vicente R
    New Phytol; 2002 Jul; 155(1):33-45. PubMed ID: 33873300
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Photorespiratory toxicity in autotrophic cell cultures of a mutant of Nicotiana sylvestris lacking serine: glyoxylate aminotransferase activity.
    McHale NA; Havir EA; Zelitch I
    Planta; 1989 Aug; 179(1):67-72. PubMed ID: 24201423
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Subcellular Localization of Asparaginase and Asparagine Aminotransferase in Pisum sativum Leaves.
    Ireland RJ; Joy KW
    Plant Physiol; 1983 Aug; 72(4):1127-9. PubMed ID: 16663132
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Asparagine, colorectal cancer, and the role of sex, genes, microbes, and diet: A narrative review.
    Shen X; Jain A; Aladelokun O; Yan H; Gilbride A; Ferrucci LM; Lu L; Khan SA; Johnson CH
    Front Mol Biosci; 2022; 9():958666. PubMed ID: 36090030
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The value of mutants unable to carry out photorespiration.
    Blackwell RD; Murray AJ; Lea PJ; Kendall AC; Hall NP; Turner JC; Wallsgrove RM
    Photosynth Res; 1988 Apr; 16(1-2):155-76. PubMed ID: 24430997
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Cellular Stress Following Water Deprivation in the Model Legume Lotus japonicus.
    Betti M; Pérez-Delgado C; García-Calderón M; Díaz P; Monza J; Márquez AJ
    Cells; 2012 Nov; 1(4):1089-106. PubMed ID: 24710544
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Food safety: Structure and expression of the asparagine synthetase gene family of wheat.
    Gao R; Curtis TY; Powers SJ; Xu H; Huang J; Halford NG
    J Cereal Sci; 2016 Mar; 68():122-131. PubMed ID: 27110058
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Asparagine metabolism-key to the nitrogen nutrition of developing legume seeds.
    Atkins CA; Pate JS; Sharkey PJ
    Plant Physiol; 1975 Dec; 56(6):807-12. PubMed ID: 16659399
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Human asparagine synthetase associates with the mitotic spindle.
    Noree C; Monfort E; Shotelersuk V
    Biol Open; 2018 Dec; 7(12):. PubMed ID: 30464009
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Induction of isoflavonoid pathway in the model legume Lotus japonicus: molecular characterization of enzymes involved in phytoalexin biosynthesis.
    Shimada N; Akashi T; Aoki T; Ayabe S
    Plant Sci; 2000 Dec; 160(1):37-47. PubMed ID: 11164575
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Rapid characterization of plant mutants with an altered ion-profile: a case study using Lotus japonicus.
    Chen Z; Watanabe T; Shinano T; Okazaki K; Osaki M
    New Phytol; 2009 Mar; 181(4):795-801. PubMed ID: 19140942
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The isolation and characterisation of a catalase-deficient mutant of barley (Hordeum vulgare L.).
    Kendall AC; Keys AJ; Turner JC; Lea PJ; Miflin BJ
    Planta; 1983 Dec; 159(6):505-11. PubMed ID: 24258326
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Novel insights into regulation of asparagine synthetase in conifers.
    Canales J; Rueda-López M; Craven-Bartle B; Avila C; Cánovas FM
    Front Plant Sci; 2012; 3():100. PubMed ID: 22654888
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Effects of A6E Mutation on Protein Expression and Supramolecular Assembly of Yeast Asparagine Synthetase.
    Surasiang T; Noree C
    Biology (Basel); 2021 Apr; 10(4):. PubMed ID: 33916846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.