BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29025677)

  • 1. Degradation of glutamate-based organogels for biodegradable implants: In vitro study and in vivo observation.
    Hu B; Wang W; Wang Y; Yang Y; Xu L; Li S
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():80-90. PubMed ID: 29025677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the in vitro and in vivo degradation behavior of amino acid derivative-based organogels.
    Li Z; Cao J; Hu B; Li H; Liu H; Han F; Liu Z; Tong C; Li S
    Drug Dev Ind Pharm; 2016 Nov; 42(11):1732-41. PubMed ID: 27018332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of 12-HSA-based organogels as injectable implants for the controlled delivery of hydrophilic and lipophilic therapeutic agents.
    Esposito CL; Tardif V; Sarrazin M; Kirilov P; Roullin VG
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():110999. PubMed ID: 32993979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembled drug delivery system based on low-molecular-weight bis-amide organogelator: synthesis, properties and in vivo evaluation.
    Li Z; Cao J; Li H; Liu H; Han F; Liu Z; Tong C; Li S
    Drug Deliv; 2016 Oct; 23(8):3168-3178. PubMed ID: 26912188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipase is essential for the study of in vitro release kinetics from organogels.
    Dufresne MH; Marouf E; Kränzlin Y; Gauthier MA; Leroux JC
    Mol Pharm; 2012 Jun; 9(6):1803-11. PubMed ID: 22510056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug.
    Pereira Camelo SR; Franceschi S; Perez E; Girod Fullana S; Ré MI
    Drug Dev Ind Pharm; 2016; 42(6):985-97. PubMed ID: 26548427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organogels based on amino acid derivatives and their optimization for drug release using response surface methodology.
    Hu B; Yan H; Sun Y; Chen X; Sun Y; Li S; Jing Y; Li H
    Artif Cells Nanomed Biotechnol; 2020 Dec; 48(1):266-275. PubMed ID: 31851842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved initial burst of estradiol organogel as long-term in situ drug delivery implant: formulation, in vitro and in vivo characterization.
    Yang Y; Xu L; Gao Y; Wang Q; Che X; Li S
    Drug Dev Ind Pharm; 2012 May; 38(5):550-6. PubMed ID: 22420863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic modifications of amino acid-based organogelators for the investigation of structure-property correlations in drug delivery system.
    Hu B; Sun W; Li H; Sui H; Li S
    Int J Pharm; 2018 Aug; 547(1-2):637-647. PubMed ID: 29933060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organogels, promising drug delivery systems: an update of state-of-the-art and recent applications.
    Esposito CL; Kirilov P; Roullin VG
    J Control Release; 2018 Feb; 271():1-20. PubMed ID: 29269143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation and evaluation of novel controlled release of topical pluronic lecithin organogel of mefenamic acid.
    Jhawat V; Gupta S; Saini V
    Drug Deliv; 2016 Nov; 23(9):3573-3581. PubMed ID: 27494650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parenteral thermo-sensitive organogel for schizophrenia therapy, in vitro and in vivo evaluation.
    Wang D; Zhao J; Liu X; Sun F; Zhou Y; Teng L; Li Y
    Eur J Pharm Sci; 2014 Aug; 60():40-8. PubMed ID: 24815944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organogels in drug delivery.
    Murdan S
    Expert Opin Drug Deliv; 2005 May; 2(3):489-505. PubMed ID: 16296770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Solvent Parameters for Predicting Organogel Formation.
    Hu B; Sun W; Yang B; Li H; Zhou L; Li S
    AAPS PharmSciTech; 2018 Jul; 19(5):2288-2300. PubMed ID: 29845502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Olive oil/policosanol organogels for nutraceutical and drug delivery purposes.
    Lupi FR; Gabriele D; Baldino N; Mijovic P; Parisi OI; Puoci F
    Food Funct; 2013 Oct; 4(10):1512-20. PubMed ID: 24056806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the monostearate/monopalmitate ratio on the oral release of active agents from monoacylglycerol organogels.
    Lupi FR; Mancina V; Baldino N; Parisi OI; Scrivano L; Gabriele D
    Food Funct; 2018 Jun; 9(6):3278-3290. PubMed ID: 29789827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of organogel as a novel oral controlled release formulation for lipophilic compounds.
    Iwanaga K; Sumizawa T; Miyazaki M; Kakemi M
    Int J Pharm; 2010 Mar; 388(1-2):123-8. PubMed ID: 20045041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organogels and their use in drug delivery--a review.
    Vintiloiu A; Leroux JC
    J Control Release; 2008 Feb; 125(3):179-92. PubMed ID: 18082283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and characterization of sorbitan monostearate and sesame oil-based organogels for topical delivery of antimicrobials.
    Singh VK; Pramanik K; Ray SS; Pal K
    AAPS PharmSciTech; 2015 Apr; 16(2):293-305. PubMed ID: 25277240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined effect of shearing and cooling rate on the rheology of organogels developed by selected gelators.
    De la Peña-Gil A; Álvarez-Mitre FM; González-Chávez MM; Charó-Alonso MA; Toro-Vazquez JF
    Food Res Int; 2017 Mar; 93():52-65. PubMed ID: 28290280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.