These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 29025734)
1. Dietary copper-fructose interactions alter gut microbial activity in male rats. Song M; Li X; Zhang X; Shi H; Vos MB; Wei X; Wang Y; Gao H; Rouchka EC; Yin X; Zhou Z; Prough RA; Cave MC; McClain CJ Am J Physiol Gastrointest Liver Physiol; 2018 Jan; 314(1):G119-G130. PubMed ID: 29025734 [TBL] [Abstract][Full Text] [Related]
2. Analysis of sex differences in dietary copper-fructose interaction-induced alterations of gut microbial activity in relation to hepatic steatosis. Song M; Yuan F; Li X; Ma X; Yin X; Rouchka EC; Zhang X; Deng Z; Prough RA; McClain CJ Biol Sex Differ; 2021 Jan; 12(1):3. PubMed ID: 33407877 [TBL] [Abstract][Full Text] [Related]
3. Ileum Proteomics Identifies Distinct Pathways Associated with Different Dietary Doses of Copper-Fructose Interactions: Implications for the Gut-Liver Axis and MASLD. Xu M; Li M; Benz F; Merchant M; McClain CJ; Song M Nutrients; 2024 Jun; 16(13):. PubMed ID: 38999831 [TBL] [Abstract][Full Text] [Related]
4. Intestinal Barrier Function and the Gut Microbiome Are Differentially Affected in Mice Fed a Western-Style Diet or Drinking Water Supplemented with Fructose. Volynets V; Louis S; Pretz D; Lang L; Ostaff MJ; Wehkamp J; Bischoff SC J Nutr; 2017 May; 147(5):770-780. PubMed ID: 28356436 [No Abstract] [Full Text] [Related]
5. Kupffer cell depletion protects against the steatosis, but not the liver damage, induced by marginal-copper, high-fructose diet in male rats. Song M; Schuschke DA; Zhou Z; Zhong W; Zhang J; Zhang X; Wang Y; McClain CJ Am J Physiol Gastrointest Liver Physiol; 2015 Jun; 308(11):G934-45. PubMed ID: 25813056 [TBL] [Abstract][Full Text] [Related]
6. Effects of Dietary Different Doses of Copper and High Fructose Feeding on Rat Fecal Metabolome. Wei X; Song M; Yin X; Schuschke DA; Koo I; McClain CJ; Zhang X J Proteome Res; 2015 Sep; 14(9):4050-8. PubMed ID: 26216400 [TBL] [Abstract][Full Text] [Related]
7. High fructose feeding induces copper deficiency in Sprague-Dawley rats: a novel mechanism for obesity related fatty liver. Song M; Schuschke DA; Zhou Z; Chen T; Pierce WM; Wang R; Johnson WT; McClain CJ J Hepatol; 2012 Feb; 56(2):433-40. PubMed ID: 21781943 [TBL] [Abstract][Full Text] [Related]
8. Loss of Junctional Adhesion Molecule A Promotes Severe Steatohepatitis in Mice on a Diet High in Saturated Fat, Fructose, and Cholesterol. Rahman K; Desai C; Iyer SS; Thorn NE; Kumar P; Liu Y; Smith T; Neish AS; Li H; Tan S; Wu P; Liu X; Yu Y; Farris AB; Nusrat A; Parkos CA; Anania FA Gastroenterology; 2016 Oct; 151(4):733-746.e12. PubMed ID: 27342212 [TBL] [Abstract][Full Text] [Related]
9. Modulation of the Gut Microbiota in Rats by Hugan Qingzhi Tablets during the Treatment of High-Fat-Diet-Induced Nonalcoholic Fatty Liver Disease. Tang W; Yao X; Xia F; Yang M; Chen Z; Zhou B; Liu Q Oxid Med Cell Longev; 2018; 2018():7261619. PubMed ID: 30671174 [TBL] [Abstract][Full Text] [Related]
10. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Porras D; Nistal E; Martínez-Flórez S; Pisonero-Vaquero S; Olcoz JL; Jover R; González-Gallego J; García-Mediavilla MV; Sánchez-Campos S Free Radic Biol Med; 2017 Jan; 102():188-202. PubMed ID: 27890642 [TBL] [Abstract][Full Text] [Related]
11. A rise in Proteobacteria is an indicator of gut-liver axis-mediated nonalcoholic fatty liver disease in high-fructose-fed adult mice. Vasques-Monteiro IML; Silva-Veiga FM; Miranda CS; de Andrade Gonçalves ÉCB; Daleprane JB; Souza-Mello V Nutr Res; 2021 Jul; 91():26-35. PubMed ID: 34130208 [TBL] [Abstract][Full Text] [Related]
12. High sucrose diet-induced dysbiosis of gut microbiota promotes fatty liver and hyperlipidemia in rats. Sun S; Araki Y; Hanzawa F; Umeki M; Kojima T; Nishimura N; Ikeda S; Mochizuki S; Oda H J Nutr Biochem; 2021 Jul; 93():108621. PubMed ID: 33705945 [TBL] [Abstract][Full Text] [Related]
13. Effects of different diets on intestinal microbiota and nonalcoholic fatty liver disease development. Liu JP; Zou WL; Chen SJ; Wei HY; Yin YN; Zou YY; Lu FG World J Gastroenterol; 2016 Aug; 22(32):7353-64. PubMed ID: 27621581 [TBL] [Abstract][Full Text] [Related]
14. The chronic consumption of dietary fructose promotes the gut Clostridium species imbalance and bile acid alterations in developing nonalcoholic fatty liver disease. Zhang D; Wang H; Liu A; Wang S; Xu C; Lan K; Xiang W; Zhu K; Xiao Y; Fu J; Jiang R; Chen W; Ni Y J Nutr Biochem; 2023 Nov; 121():109434. PubMed ID: 37661068 [TBL] [Abstract][Full Text] [Related]
15. Artemisia sphaerocephala Krasch polysaccharide prevents hepatic steatosis in high fructose-fed mice associated with changes in the gut microbiota. Zhang B; Ren D; Zhao Y; Liu Y; Zhai X; Yang X Food Funct; 2019 Dec; 10(12):8137-8148. PubMed ID: 31746883 [TBL] [Abstract][Full Text] [Related]
16. Modest fructose beverage intake causes liver injury and fat accumulation in marginal copper deficient rats. Song M; Schuschke DA; Zhou Z; Chen T; Shi X; Zhang J; Zhang X; Pierce WM; Johnson WT; Vos MB; McClain CJ Obesity (Silver Spring); 2013 Aug; 21(8):1669-75. PubMed ID: 23512597 [TBL] [Abstract][Full Text] [Related]
17. Maternal sucralose intake alters gut microbiota of offspring and exacerbates hepatic steatosis in adulthood. Dai X; Guo Z; Chen D; Li L; Song X; Liu T; Jin G; Li Y; Liu Y; Ajiguli A; Yang C; Wang B; Cao H Gut Microbes; 2020 Jul; 11(4):1043-1063. PubMed ID: 32228300 [TBL] [Abstract][Full Text] [Related]