These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes. Wei S; Choudhury S; Tu Z; Zhang K; Archer LA Acc Chem Res; 2018 Jan; 51(1):80-88. PubMed ID: 29227617 [TBL] [Abstract][Full Text] [Related]
4. Designer interphases for the lithium-oxygen electrochemical cell. Choudhury S; Wan CT; Al Sadat WI; Tu Z; Lau S; Zachman MJ; Kourkoutis LF; Archer LA Sci Adv; 2017 Apr; 3(4):e1602809. PubMed ID: 28439557 [TBL] [Abstract][Full Text] [Related]
5. Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Zheng J; Kim MS; Tu Z; Choudhury S; Tang T; Archer LA Chem Soc Rev; 2020 May; 49(9):2701-2750. PubMed ID: 32232259 [TBL] [Abstract][Full Text] [Related]
6. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
7. Existence of Solid Electrolyte Interphase in Mg Batteries: Mg/S Chemistry as an Example. Gao T; Hou S; Huynh K; Wang F; Eidson N; Fan X; Han F; Luo C; Mao M; Li X; Wang C ACS Appl Mater Interfaces; 2018 May; 10(17):14767-14776. PubMed ID: 29620854 [TBL] [Abstract][Full Text] [Related]
8. Designing Polymeric Interphases for Stable Lithium Metal Deposition. Stalin S; Tikekar M; Biswal P; Li G; Johnson HEN; Deng Y; Zhao Q; Vu D; Coates GW; Archer LA Nano Lett; 2020 Aug; 20(8):5749-5758. PubMed ID: 32479086 [TBL] [Abstract][Full Text] [Related]
9. Dynamic Electrode-Electrolyte Intermixing in Solid-State Sodium Nano-Batteries. Nuwayhid RB; Kozen AC; Long DM; Ahuja K; Rubloff GW; Gregorczyk KE ACS Appl Mater Interfaces; 2023 May; 15(20):24271-24283. PubMed ID: 37167022 [TBL] [Abstract][Full Text] [Related]
10. Strategies to Enable Reversible Magnesium Electrochemistry: From Electrolytes to Artificial Solid-Electrolyte Interphases. Liang Z; Ban C Angew Chem Int Ed Engl; 2021 May; 60(20):11036-11047. PubMed ID: 32691897 [TBL] [Abstract][Full Text] [Related]
11. Interfacial Chemistry in Solid-State Batteries: Formation of Interphase and Its Consequences. Wang S; Xu H; Li W; Dolocan A; Manthiram A J Am Chem Soc; 2018 Jan; 140(1):250-257. PubMed ID: 29250960 [TBL] [Abstract][Full Text] [Related]
12. Room-Temperature All-Liquid-Metal Batteries Based on Fusible Alloys with Regulated Interfacial Chemistry and Wetting. Ding Y; Guo X; Qian Y; Xue L; Dolocan A; Yu G Adv Mater; 2020 Jul; 32(30):e2002577. PubMed ID: 32548922 [TBL] [Abstract][Full Text] [Related]
13. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Choudhury S; Tu Z; Stalin S; Vu D; Fawole K; Gunceler D; Sundararaman R; Archer LA Angew Chem Int Ed Engl; 2017 Oct; 56(42):13070-13077. PubMed ID: 28834133 [TBL] [Abstract][Full Text] [Related]
14. Interfacial Reactivity Benchmarking of the Sodium Ion Conductors Na Wenzel S; Leichtweiss T; Weber DA; Sann J; Zeier WG; Janek J ACS Appl Mater Interfaces; 2016 Oct; 8(41):28216-28224. PubMed ID: 27677413 [TBL] [Abstract][Full Text] [Related]
15. Unraveling the Formation Mechanism of Solid-Liquid Electrolyte Interphases on LiPON Thin Films. Weiss M; Seidlhofer BK; Geiß M; Geis C; Busche MR; Becker M; Vargas-Barbosa NM; Silvi L; Zeier WG; Schröder D; Janek J ACS Appl Mater Interfaces; 2019 Mar; 11(9):9539-9547. PubMed ID: 30735347 [TBL] [Abstract][Full Text] [Related]
16. Passivation Layers in Mg-Metal Batteries: Robust Interphases for Li-Metal Batteries. Zhao Z; Nian B; Lei Y; Zhao L; Hedhili MN; Guo D; Shi Z; Zhao W; El-Demellawi JK; Wang Y; Zhu Y; Xu K; Alshareef HN Adv Mater; 2024 May; ():e2402626. PubMed ID: 38781603 [TBL] [Abstract][Full Text] [Related]
17. Designing Solid Electrolyte Interfaces towards Homogeneous Na Deposition: Theoretical Guidelines for Electrolyte Additives and Superior High-Rate Cycling Stability. Wang L; Ren N; Yao Y; Yang H; Jiang W; He Z; Jiang Y; Jiao S; Song L; Wu X; Wu ZS; Yu Y Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202214372. PubMed ID: 36480194 [TBL] [Abstract][Full Text] [Related]
18. The early-stage growth and reversibility of Li electrodeposition in Br-rich electrolytes. Biswal P; Kludze A; Rodrigues J; Deng Y; Moon T; Stalin S; Zhao Q; Yin J; Kourkoutis LF; Archer LA Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33372134 [TBL] [Abstract][Full Text] [Related]
19. Mechanism Study of Unsaturated Tripropargyl Phosphate as an Efficient Electrolyte Additive Forming Multifunctional Interphases in Lithium Ion and Lithium Metal Batteries. Qian Y; Kang Y; Hu S; Shi Q; Chen Q; Tang X; Xiao Y; Zhao H; Luo G; Xu K; Deng Y ACS Appl Mater Interfaces; 2020 Mar; 12(9):10443-10451. PubMed ID: 32040291 [TBL] [Abstract][Full Text] [Related]
20. Formation of Passivate Interphases by Na Nasu A; Inaoka T; Tsuji F; Motohashi K; Sakuda A; Tatsumisago M; Hayashi A ACS Appl Mater Interfaces; 2022 Jun; 14(21):24480-24485. PubMed ID: 35579546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]