These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29026112)

  • 41. Overexpression of O-methyltransferase leads to improved vanillin production in baker's yeast only when complemented with model-guided network engineering.
    Brochado AR; Patil KR
    Biotechnol Bioeng; 2013 Feb; 110(2):656-9. PubMed ID: 23007522
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Antagonism between sexual and natural selection in experimental populations of Saccharomyces cerevisiae.
    Zeyl C; Curtin C; Karnap K; Beauchamp E
    Evolution; 2005 Oct; 59(10):2109-15. PubMed ID: 16405156
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of a role for actin in translational fidelity in yeast.
    Kandl KA; Munshi R; Ortiz PA; Andersen GR; Kinzy TG; Adams AE
    Mol Genet Genomics; 2002 Sep; 268(1):10-8. PubMed ID: 12242494
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An Expanded Heterologous GAL Promoter Collection for Diauxie-Inducible Expression in Saccharomyces cerevisiae.
    Peng B; Wood RJ; Nielsen LK; Vickers CE
    ACS Synth Biol; 2018 Feb; 7(2):748-751. PubMed ID: 29301066
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Yeast actin with a subdomain 4 mutation (A204C) exhibits increased pointed-end critical concentration.
    Teal DJ; Dawson JF
    Biochem Cell Biol; 2007 Jun; 85(3):319-25. PubMed ID: 17612626
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PhiReX: a programmable and red light-regulated protein expression switch for yeast.
    Hochrein L; Machens F; Messerschmidt K; Mueller-Roeber B
    Nucleic Acids Res; 2017 Sep; 45(15):9193-9205. PubMed ID: 28911120
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reduction of glycerol production to improve ethanol yield in an engineered Saccharomyces cerevisiae using glycerol as a substrate.
    Yu KO; Kim SW; Han SO
    J Biotechnol; 2010 Oct; 150(2):209-14. PubMed ID: 20854852
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Construction of a Saccharomyces cerevisiae strain with a high level of RNA.
    Chuwattanakul V; Kim YH; Sugiyama M; Nishiuchi H; Miwa H; Kaneko Y; Harashima S
    J Biosci Bioeng; 2011 Jul; 112(1):1-7. PubMed ID: 21571588
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation.
    Tong YP; Kneer R; Zhu YG
    Trends Plant Sci; 2004 Jan; 9(1):7-9. PubMed ID: 14729212
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering.
    Chen Y; Xiao W; Wang Y; Liu H; Li X; Yuan Y
    Microb Cell Fact; 2016 Jun; 15(1):113. PubMed ID: 27329233
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genetic re-engineering of Saccharomyces cerevisiae RAD51 leads to a significant increase in the frequency of gene repair in vivo.
    Liu L; Maguire KK; Kmiec EB
    Nucleic Acids Res; 2004; 32(7):2093-101. PubMed ID: 15087488
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physiological characterization of the yeast metallothionein (CUP1) promoter, and consequences of overexpressing its transcriptional activator, ACE1.
    Hottiger T; Fürst P; Pohlig G; Heim J
    Yeast; 1994 Mar; 10(3):283-96. PubMed ID: 8017099
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Programmable ligand-controlled riboregulators of eukaryotic gene expression.
    Bayer TS; Smolke CD
    Nat Biotechnol; 2005 Mar; 23(3):337-43. PubMed ID: 15723047
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.
    Chen Y; Stabryla L; Wei N
    Appl Environ Microbiol; 2016 Jan; 82(7):2156-2166. PubMed ID: 26826231
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of the CDC10 product and the timing of events of the budding site of Saccharomyces cerevisiae.
    Jeong JW; Kim DH; Choi SY; Kim HB
    Mol Cells; 2001 Aug; 12(1):77-83. PubMed ID: 11561733
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Invasive Insect Species: Global Challenges, Strategies & Opportunities.
    Venette RC; Hutchison WD
    Front Insect Sci; 2021; 1():650520. PubMed ID: 38468878
    [No Abstract]   [Full Text] [Related]  

  • 57. HUGE pipeline to measure temporal genetic variation in
    Feltman NR; Burkness EC; Ebbenga DN; Hutchison WD; Smanski MJ
    Front Insect Sci; 2022; 2():981974. PubMed ID: 38468784
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling-informed Engineered Genetic Incompatibility strategies to overcome resistance in the invasive
    Sychla A; Feltman NR; Hutchison WD; Smanski MJ
    Front Insect Sci; 2022; 2():1063789. PubMed ID: 38468757
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting thresholds for population replacement gene drives.
    Janzen A; Pothula R; Sychla A; Feltman NR; Smanski MJ
    BMC Biol; 2024 Feb; 22(1):40. PubMed ID: 38369493
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Toward invasive mussel genetic biocontrol: Approaches, challenges, and perspectives.
    Hernández Elizárraga VH; Ballantyne S; O'Brien LG; Americo JA; Suhr ST; Senut MC; Minerich B; Merkes CM; Edwards TM; Klymus K; Richter CA; Waller DL; Passamaneck YJ; Rebelo MF; Gohl DM
    iScience; 2023 Oct; 26(10):108027. PubMed ID: 37860763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.