These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29026124)

  • 1. A Unified Framework for Modeling Continuum and Rarefied Gas Flows.
    Xiao H; Tang K
    Sci Rep; 2017 Oct; 7(1):13108. PubMed ID: 29026124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Issues for Solving Eu-type Generalized Hydrodynamic Equations to Investigate Continuum-rarefied Gas Flows.
    Xiao H; He Q; Wu D
    Sci Rep; 2019 Jan; 9(1):304. PubMed ID: 30670755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale gas-kinetic simulation for continuum and near-continuum flows.
    Xu K; Liu H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016306. PubMed ID: 17358252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arbitrary Lagrangian-Eulerian-type discrete unified gas kinetic scheme for low-speed continuum and rarefied flow simulations with moving boundaries.
    Wang Y; Zhong C; Liu S
    Phys Rev E; 2019 Dec; 100(6-1):063310. PubMed ID: 31962427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Third-order discrete unified gas kinetic scheme for continuum and rarefied flows: Low-speed isothermal case.
    Wu C; Shi B; Shu C; Chen Z
    Phys Rev E; 2018 Feb; 97(2-1):023306. PubMed ID: 29548207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized second-order slip boundary condition for nonequilibrium gas flows.
    Guo Z; Qin J; Zheng C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013021. PubMed ID: 24580334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamental solutions of an extended hydrodynamic model in two dimensions: Derivation, theory, and applications.
    Himanshi ; Rana AS; Gupta VK
    Phys Rev E; 2023 Jul; 108(1-2):015306. PubMed ID: 37583201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simplified unified wave-particle method with quantified model-competition mechanism for numerical calculation of multiscale flows.
    Liu S; Zhong C; Fang M
    Phys Rev E; 2020 Jul; 102(1-1):013304. PubMed ID: 32794944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Derivation of stable Burnett equations for rarefied gas flows.
    Singh N; Jadhav RS; Agrawal A
    Phys Rev E; 2017 Jul; 96(1-1):013106. PubMed ID: 29347080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of the discrete velocity and lattice Boltzmann methods for rarefied gas flows through irregular channels.
    Su W; Lindsay S; Liu H; Wu L
    Phys Rev E; 2017 Aug; 96(2-1):023309. PubMed ID: 28950559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variant of gas kinetic flux solver for flows beyond Navier-Stokes level.
    Yuan ZY; Shu C; Liu ZJ; Yang LM; Liu W
    Phys Rev E; 2021 Nov; 104(5-2):055305. PubMed ID: 34942831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case.
    Guo Z; Wang R; Xu K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033313. PubMed ID: 25871252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice Boltzmann simulation of rarefied gas flows in microchannels.
    Zhang Y; Qin R; Emerson DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):047702. PubMed ID: 15903829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of explicit formulations of G45-based gas kinetic scheme for simulation of continuum and rarefied flows.
    Liu ZJ; Shu C; Chen SY; Liu W; Yuan ZY; Yang LM
    Phys Rev E; 2022 Apr; 105(4-2):045302. PubMed ID: 35590639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macroscopic description of nonequilibrium effects in thermal transpiration flows in annular microchannels.
    Taheri P; Bahrami M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036311. PubMed ID: 23031017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrete unified gas-kinetic wave-particle method for flows in all flow regimes.
    Yang LM; Li ZH; Shu C; Liu YY; Liu W; Wu J
    Phys Rev E; 2023 Jul; 108(1-2):015302. PubMed ID: 37583183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaporation Boundary Conditions for the Linear R13 Equations Based on the Onsager Theory.
    Beckmann AF; Rana AS; Torrilhon M; Struchtrup H
    Entropy (Basel); 2018 Sep; 20(9):. PubMed ID: 33265769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the kinetic model equations.
    Liu S; Zhong C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033306. PubMed ID: 24730966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale lattice Boltzmann approach to modeling gas flows.
    Meng J; Zhang Y; Shan X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046701. PubMed ID: 21599328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Going beyond an old shockwave conjecture for improving upon Navier-Stokes.
    Holian BL; Mareschal M; Ravelo R
    Phys Rev E; 2024 Jul; 110(1-2):015105. PubMed ID: 39161003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.