These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29026140)

  • 1. Embroidered Copper Microwire Current Collector for Improved Cycling Performance of Silicon Anodes in Lithium-Ion Batteries.
    Breitung B; Aguiló-Aguayo N; Bechtold T; Hahn H; Janek J; Brezesinski T
    Sci Rep; 2017 Oct; 7(1):13010. PubMed ID: 29026140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilizing van der Waals Slippery Interfaces to Enhance the Electrochemical Stability of Silicon Film Anodes in Lithium-Ion Batteries.
    Basu S; Suresh S; Ghatak K; Bartolucci SF; Gupta T; Hundekar P; Kumar R; Lu TM; Datta D; Shi Y; Koratkar N
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13442-13451. PubMed ID: 29620865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multishelled Si@Cu Microparticles Supported on 3D Cu Current Collectors for Stable and Binder-free Anodes of Lithium-Ion Batteries.
    Zhang Z; Wang ZL; Lu X
    ACS Nano; 2018 Apr; 12(4):3587-3599. PubMed ID: 29630825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-Type Doped Silicon Thin Film on a Porous Cu Current Collector as the Negative Electrode for Li-Ion Batteries.
    Mukanova A; Nurpeissova A; Kim SS; Myronov M; Bakenov Z
    ChemistryOpen; 2018 Jan; 7(1):92-96. PubMed ID: 29318101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries.
    Quiroga-González E; Carstensen J; Föll H
    Materials (Basel); 2013 Feb; 6(2):626-636. PubMed ID: 28809331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries.
    Cui LF; Hu L; Choi JW; Cui Y
    ACS Nano; 2010 Jul; 4(7):3671-8. PubMed ID: 20518567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Room-Temperature Cross-Linked Highly Branched Biopolymeric Binder Based on the Diels-Alder Reaction for High-Performance Silicon Anodes in Lithium-Ion Batteries.
    Cai Z; Hu S; Wei Y; Huang T; Yu A; Zhang H
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56095-56108. PubMed ID: 34727688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.
    Zhang Z; Wang Y; Tan Q; Li D; Chen Y; Zhong Z; Su F
    Nanoscale; 2014 Jan; 6(1):371-7. PubMed ID: 24201898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Co
    Zhu C; Liu Z; Wang J; Pu J; Wu W; Zhou Q; Zhang H
    Small; 2017 Sep; 13(34):. PubMed ID: 28696586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured Silicon-Carbon 3D Electrode Architectures for High-Performance Lithium-Ion Batteries.
    Kumar SK; Ghosh S; Malladi SK; Nanda J; Martha SK
    ACS Omega; 2018 Aug; 3(8):9598-9606. PubMed ID: 31459090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D amorphous silicon on nanopillar copper electrodes as anodes for high-rate lithium-ion batteries.
    Kim G; Jeong S; Shin JH; Cho J; Lee H
    ACS Nano; 2014 Feb; 8(2):1907-12. PubMed ID: 24446833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Graphene Modified Cu Current Collector on the Performance of Li
    Jiang J; Nie P; Ding B; Wu W; Chang Z; Wu Y; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30926-30932. PubMed ID: 27734672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Printable and Free-Standing Silicon-Based Anode for Current Collector-Free Lithium-Ion Batteries.
    Je M; Ham M; Kim S; Park Y; Park S; Lee H
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37877815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma Surface Treatment of Cu Current Collectors for Improving the Electrochemical Performance of Si Anodes.
    Kim JT; Kennedy S; Phiri I; Ryou SY
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11400-11407. PubMed ID: 38409749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon Nanoparticles with a Polymer-Derived Carbon Shell for Improved Lithium-Ion Batteries: Investigation into Volume Expansion, Gas Evolution, and Particle Fracture.
    Schiele A; Breitung B; Mazilkin A; Schweidler S; Janek J; Gumbel S; Fleischmann S; Burakowska-Meise E; Sommer H; Brezesinski T
    ACS Omega; 2018 Dec; 3(12):16706-16713. PubMed ID: 31458300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Hierarchical Porous Cu-Based Composite Current Collector with Enhanced Ligaments for Notably Improved Cycle Stability of Sn Anode in Li-Ion Batteries.
    Luo Z; Xu J; Yuan B; Hu R; Yang L; Gao Y; Zhu M
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22050-22058. PubMed ID: 29882644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caramel popcorn shaped silicon particle with carbon coating as a high performance anode material for Li-ion batteries.
    He M; Sa Q; Liu G; Wang Y
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11152-8. PubMed ID: 24111737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Laser-Textured Cu Foil with Deep Ablation on Si Anode Performance in Li-Ion Batteries.
    Wang J; Cao L; Li S; Xu J; Xiao R; Huang T
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Conductive Gel Network as an Effective Binder for High-Performance Si Electrodes in Lithium-Ion Batteries.
    Yu X; Yang H; Meng H; Sun Y; Zheng J; Ma D; Xu X
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15961-7. PubMed ID: 26154655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.