These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29026173)

  • 21. Au Nanoparticles Immobilized on Honeycomb-Like Polymeric Films for Surface-Enhanced Raman Scattering (SERS) Detection.
    Chiang CY; Liu TY; Su YA; Wu CH; Cheng YW; Cheng HW; Jeng RJ
    Polymers (Basel); 2017 Mar; 9(3):. PubMed ID: 30970772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnetic tuning of SERS hot spots in polymer-coated magnetic-plasmonic iron-silver nanoparticles.
    Scaramuzza S; Polizzi S; Amendola V
    Nanoscale Adv; 2019 Jul; 1(7):2681-2689. PubMed ID: 36132716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS
    Lu Z; Si H; Li Z; Yu J; Liu Y; Feng D; Zhang C; Yang W; Man B; Jiang S
    Opt Express; 2018 Aug; 26(17):21626-21641. PubMed ID: 30130866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile synthesis of Fe
    Han D; Li B; Chen Y; Wu T; Kou Y; Xue X; Chen L; Liu Y; Duan Q
    Nanotechnology; 2019 Nov; 30(46):465703. PubMed ID: 31476137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-Assembly of Au@Ag Nanoparticles on Mussel Shell To Form Large-Scale 3D Supercrystals as Natural SERS Substrates for the Detection of Pathogenic Bacteria.
    Yuan K; Zheng J; Yang D; Jurado Sánchez B; Liu X; Guo X; Liu C; Dina NE; Jian J; Bao Z; Hu Z; Liang Z; Zhou H; Jiang Z
    ACS Omega; 2018 Mar; 3(3):2855-2864. PubMed ID: 30221223
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monodispersed mesoscopic star-shaped gold particles via silver-ion-assisted multi-directional growth for highly sensitive SERS-active substrates.
    Kim S; Yoo S; Nam DH; Kim H; Hafner JH; Lee S
    Nano Converg; 2024 Jul; 11(1):26. PubMed ID: 38965160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA Assembly of Plasmonic Nanostructures Enables
    Tan Y; Zhou J; Xing X; Wang J; Huang J; Liu H; Chen J; Dong M; Xiang Q; Dong H; Zhang X
    Anal Chem; 2023 Aug; 95(30):11236-11242. PubMed ID: 37467354
    [TBL] [Abstract][Full Text] [Related]  

  • 29. "On-site" analysis of pesticide residues in complex sample matrix by plasmonic SERS nanostructure hybridized hydrogel.
    Qi G; Wang Y; Liu T; Sun D
    Anal Chim Acta; 2023 Nov; 1282():341903. PubMed ID: 37923404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The structural transition of bimetallic Ag-Au from core/shell to alloy and SERS application.
    Ha Pham TT; Vu XH; Dien ND; Trang TT; Van Truong N; Thanh TD; Tan PM; Ca NX
    RSC Adv; 2020 Jun; 10(41):24577-24594. PubMed ID: 35516184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembled nano-Ag/Au@Au film composite SERS substrates show high uniformity and high enhancement factor for creatinine detection.
    Wen P; Yang F; Ge C; Li S; Xu Y; Chen L
    Nanotechnology; 2021 Jul; 32(39):. PubMed ID: 34161934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-Organized SERS Substrates with Efficient Analyte Enrichment in the Hot Spots.
    Dzhagan V; Mazur N; Kapush O; Skoryk M; Pirko Y; Yemets A; Dzhahan V; Shepeliavyi P; Valakh M; Yukhymchuk V
    ACS Omega; 2024 Jan; 9(4):4819-4830. PubMed ID: 38313516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA-induced assembly of gold nanoprisms and polystyrene beads into 3D plasmonic SERS substrates.
    Chowdhury E; Rahaman MS; Sathitsuksanoh N; Grapperhaus CA; O'Toole MG
    Nanotechnology; 2021 Jan; 32(2):025506. PubMed ID: 32987380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SERS Hotspot Engineering by Aerosol Self-Assembly of Plasmonic Ag Nanoaggregates with Tunable Interparticle Distance.
    Li H; Merkl P; Sommertune J; Thersleff T; Sotiriou GA
    Adv Sci (Weinh); 2022 Aug; 9(22):e2201133. PubMed ID: 35670133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlled Assembly of Gold Nanostructures on a Solid Substrate via Imidazole Directed Hydrogen Bonding for High Performance Surface Enhance Raman Scattering Sensing of Hypochlorous Acid.
    Sun J; Liu R; Tang J; Zhang Z; Zhou X; Liu J
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16730-7. PubMed ID: 26167718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.
    Li J; Zhu Z; Zhu B; Ma Y; Lin B; Liu R; Song Y; Lin H; Tu S; Yang C
    Anal Chem; 2016 Aug; 88(15):7828-36. PubMed ID: 27385563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hierarchically Assembled Plasmonic Metal-Dielectric-Metal Hybrid Nano-Architectures for High-Sensitivity SERS Detection.
    Pandey P; Seo MK; Shin KH; Lee YW; Sohn JI
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of Au@Ag core-shell nanostructures with a poly(3,4-dihydroxy-L-phenylalanine) interlayer for surface-enhanced Raman scattering imaging of epithelial cells.
    Wen H; Jiang P; Hu Y; Li G
    Mikrochim Acta; 2018 Jul; 185(7):353. PubMed ID: 29971629
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering.
    Zhao N; Li H; Xie Y; Feng Z; Wang Z; Yang Z; Yan X; Wang W; Tian C; Yu H
    Electrophoresis; 2019 Dec; 40(23-24):3123-3131. PubMed ID: 31576580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiplexed SERS Detection of Microcystins with Aptamer-Driven Core-Satellite Assemblies.
    Luo X; Zhao X; Wallace GQ; Brunet MH; Wilkinson KJ; Wu P; Cai C; Bazuin CG; Masson JF
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6545-6556. PubMed ID: 33522805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.