These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 29026173)
41. Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable 'hot-spots' for highly reproducible molecular sensing. Kandjani AE; Mohammadtaheri M; Thakkar A; Bhargava SK; Bansal V J Colloid Interface Sci; 2014 Dec; 436():251-7. PubMed ID: 25278363 [TBL] [Abstract][Full Text] [Related]
42. Porous Au-Ag Nanoparticles from Galvanic Replacement Applied as Single-Particle SERS Probe for Quantitative Monitoring. Wang L; Patskovsky S; Gauthier-Soumis B; Meunier M Small; 2022 Jan; 18(1):e2105209. PubMed ID: 34761520 [TBL] [Abstract][Full Text] [Related]
43. Utilizing Ag-Au core-satellite structures for colorimetric and surface-enhanced Raman scattering dual-sensing of Cu (II). Guo Y; Li D; Zheng S; Xu N; Deng W Biosens Bioelectron; 2020 Jul; 159():112192. PubMed ID: 32291247 [TBL] [Abstract][Full Text] [Related]
44. Nanogap engineering of 3D nanoraspberries into 2D plasmonic nanoclusters toward improved SERS performance. Yang J; Zhang X; Geng L; Xia C; Chen X; Yang W; Xu H; Lin Z Nanoscale; 2024 Feb; 16(6):2877-2882. PubMed ID: 38235598 [TBL] [Abstract][Full Text] [Related]
45. AuNanostar@4-MBA@Au Core-Shell Nanostructure Coupled with Exonuclease III-Assisted Cycling Amplification for Ultrasensitive SERS Detection of Ochratoxin A. Huang XB; Wu SH; Hu HC; Sun JJ ACS Sens; 2020 Aug; 5(8):2636-2643. PubMed ID: 32786384 [TBL] [Abstract][Full Text] [Related]
46. Tip-Selective Growth of Silver on Gold Nanostars for Surface-Enhanced Raman Scattering. Zhang W; Liu J; Niu W; Yan H; Lu X; Liu B ACS Appl Mater Interfaces; 2018 May; 10(17):14850-14856. PubMed ID: 29569899 [TBL] [Abstract][Full Text] [Related]
47. Fabrication of highly sensitive and reproducible 3D surface-enhanced Raman spectroscopy substrates through in situ cleaning and layer-by-layer assembly of Au@Ag nanocube monolayer film. Gao M; Lin X; Li Z; Wang X; Qiao Y; Zhao H; Zhang J; Wang L Nanotechnology; 2019 Aug; 30(34):345604. PubMed ID: 31067524 [TBL] [Abstract][Full Text] [Related]
48. Pattern Recognition Directed Assembly of Plasmonic Gap Nanostructures for Single-Molecule SERS. Niu R; Gao F; Wang D; Zhu D; Su S; Chen S; YuWen L; Fan C; Wang L; Chao J ACS Nano; 2022 Sep; 16(9):14622-14631. PubMed ID: 36083609 [TBL] [Abstract][Full Text] [Related]
49. Large-scale assembly of geometrically diverse metal nanoparticles-based 3D plasmonic DNA nanostructures for SERS detection of PNK in cancer cells. Li X; Liu B; Liu L; Yuan H; Li Y; Zhou B; Sun J; Li C; Xue Q Talanta; 2024 Jan; 266(Pt 1):124958. PubMed ID: 37499360 [TBL] [Abstract][Full Text] [Related]
50. Stimuli-responsive plasmonic core-satellite hybrid nanostructures with tunable nanogaps. Hwang EY; Lee JH; Kang MJ; Lim DW J Mater Chem B; 2023 Feb; 11(8):1692-1704. PubMed ID: 36723160 [TBL] [Abstract][Full Text] [Related]
52. Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal. Saha A; Palmal S; Jana NR Nanoscale; 2012 Oct; 4(20):6649-57. PubMed ID: 22992658 [TBL] [Abstract][Full Text] [Related]
53. Plasmonic properties of regiospecific core-satellite assemblies of gold nanostars and nanospheres. Indrasekara AS; Thomas R; Fabris L Phys Chem Chem Phys; 2015 Sep; 17(33):21133-42. PubMed ID: 25380028 [TBL] [Abstract][Full Text] [Related]
54. A chemical route to increase hot spots on silver nanowires for surface-enhanced Raman spectroscopy application. Goh MS; Lee YH; Pedireddy S; Phang IY; Tjiu WW; Tan JM; Ling XY Langmuir; 2012 Oct; 28(40):14441-9. PubMed ID: 22970778 [TBL] [Abstract][Full Text] [Related]
55. One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms. Chen J; Qin G; Wang J; Yu J; Shen B; Li S; Ren Y; Zuo L; Shen W; Das B Biosens Bioelectron; 2013 Jun; 44():191-7. PubMed ID: 23428732 [TBL] [Abstract][Full Text] [Related]
56. Surface-Enhanced Raman Spectroscopy Substrates: Plasmonic Metals to Graphene. Mhlanga N; Ntho TA; Chauke H; Sikhwivhilu L Front Chem; 2022; 10():832282. PubMed ID: 35355787 [TBL] [Abstract][Full Text] [Related]
57. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging. Hu C; Shen J; Yan J; Zhong J; Qin W; Liu R; Aldalbahi A; Zuo X; Song S; Fan C; He D Nanoscale; 2016 Jan; 8(4):2090-6. PubMed ID: 26701141 [TBL] [Abstract][Full Text] [Related]
58. Bimetallic Core-Shell Nanoparticles of Gold and Silver via Bioinspired Polydopamine Layer as Surface-Enhanced Raman Spectroscopy (SERS) Platform. Yilmaz A; Yilmaz M Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32260586 [TBL] [Abstract][Full Text] [Related]
59. Periodic Folded Gold Nanostructures with a Sub-10 nm Nanogap for Surface-Enhanced Raman Spectroscopy. Ye Y; Wang J; Fang Z; Yan Y; Geng Y ACS Appl Mater Interfaces; 2024 Feb; 16(8):10450-10458. PubMed ID: 38357762 [TBL] [Abstract][Full Text] [Related]
60. Morphology-Controlled Fabrication of Large-Scale Dendritic Silver Nanostructures for Catalysis and SERS Applications. Cheng ZQ; Li ZW; Xu JH; Yao R; Li ZL; Liang S; Cheng GL; Zhou YH; Luo X; Zhong J Nanoscale Res Lett; 2019 Mar; 14(1):89. PubMed ID: 30868364 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]