These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29026678)

  • 21. Enhancement and bias removal of optical coherence tomography images: An iterative approach with adaptive bilateral filtering.
    Sudeep PV; Issac Niwas S; Palanisamy P; Rajan J; Xiaojun Y; Wang X; Luo Y; Liu L
    Comput Biol Med; 2016 Apr; 71():97-107. PubMed ID: 26907572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling of Retinal Optical Coherence Tomography Based on Stochastic Differential Equations: Application to Denoising.
    Tajmirriahi M; Amini Z; Hamidi A; Zam A; Rabbani H
    IEEE Trans Med Imaging; 2021 Aug; 40(8):2129-2141. PubMed ID: 33852382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical coherence tomography image denoising using a generative adversarial network with speckle modulation.
    Dong Z; Liu G; Ni G; Jerwick J; Duan L; Zhou C
    J Biophotonics; 2020 Apr; 13(4):e201960135. PubMed ID: 31970879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional curvelet-based dictionary learning for speckle noise removal of optical coherence tomography.
    Esmaeili M; Dehnavi AM; Hajizadeh F; Rabbani H
    Biomed Opt Express; 2020 Feb; 11(2):586-608. PubMed ID: 32133216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical coherence tomography image despeckling based on tensor singular value decomposition and fractional edge detection.
    Fang Y; Shao X; Liu B; Lv H
    Heliyon; 2023 Jul; 9(7):e17735. PubMed ID: 37449117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wavelet domain compounding for speckle reduction in optical coherence tomography.
    Xu J; Ou H; Sun C; Chui PC; Yang VX; Lam EY; Wong KK
    J Biomed Opt; 2013 Sep; 18(9):096002. PubMed ID: 24002189
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Noise-compensated homotopic non-local regularized reconstruction for rapid retinal optical coherence tomography image acquisitions.
    Liu C; Wong A; Fieguth P; Bizheva K; Bie H
    BMC Med Imaging; 2014 Oct; 14():37. PubMed ID: 25319186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-penalty conditional random field approach to super-resolved reconstruction of optical coherence tomography images.
    Boroomand A; Wong A; Li E; Cho DS; Ni B; Bizheva K
    Biomed Opt Express; 2013; 4(10):2032-50. PubMed ID: 24156062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wavelet denoising of multiframe optical coherence tomography data.
    Mayer MA; Borsdorf A; Wagner M; Hornegger J; Mardin CY; Tornow RP
    Biomed Opt Express; 2012 Mar; 3(3):572-89. PubMed ID: 22435103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A pilot study to image the vascular network of small melanocytic choroidal tumors with speckle noise-free 1050-nm swept source optical coherence tomography (OCT choroidal angiography).
    Maloca P; Gyger C; Hasler PW
    Graefes Arch Clin Exp Ophthalmol; 2016 Jun; 254(6):1201-10. PubMed ID: 26847040
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Triplet Cross-Fusion Learning for Unpaired Image Denoising in Optical Coherence Tomography.
    Geng M; Meng X; Zhu L; Jiang Z; Gao M; Huang Z; Qiu B; Hu Y; Zhang Y; Ren Q; Lu Y
    IEEE Trans Med Imaging; 2022 Nov; 41(11):3357-3372. PubMed ID: 35724282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Noise-Powered Disentangled Representation for Unsupervised Speckle Reduction of Optical Coherence Tomography Images.
    Huang Y; Xia W; Lu Z; Liu Y; Chen H; Zhou J; Fang L; Zhang Y
    IEEE Trans Med Imaging; 2021 Oct; 40(10):2600-2614. PubMed ID: 33326376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective retinex enhancement based on the clustering algorithm and block-matching 3D for optical coherence tomography images.
    Hu Y; Tang C; Xu M; Lei Z
    Appl Opt; 2019 Dec; 58(36):9861-9869. PubMed ID: 31873631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconstruction of Optical Coherence Tomography Images Using Mixed Low Rank Approximation and Second Order Tensor Based Total Variation Method.
    Daneshmand PG; Mehridehnavi A; Rabbani H
    IEEE Trans Med Imaging; 2021 Mar; 40(3):865-878. PubMed ID: 33232227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative study of deep neural networks with unsupervised Noise2Noise strategy for noise reduction of optical coherence tomography images.
    Qiu B; Zeng S; Meng X; Jiang Z; You Y; Geng M; Li Z; Hu Y; Huang Z; Zhou C; Ren Q; Lu Y
    J Biophotonics; 2021 Nov; 14(11):e202100151. PubMed ID: 34383390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Speckle reduction of retinal optical coherence tomography based on contourlet shrinkage.
    Xu J; Ou H; Lam EY; Chui PC; Wong KK
    Opt Lett; 2013 Aug; 38(15):2900-3. PubMed ID: 23903174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pixel-based speckle adjustment for noise reduction in Fourier-domain OCT images.
    Zhang A; Xi J; Sun J; Li X
    Biomed Opt Express; 2017 Mar; 8(3):1721-1730. PubMed ID: 28663860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-supervised speckle noise reduction of optical coherence tomography without clean data.
    Li Y; Fan Y; Liao H
    Biomed Opt Express; 2022 Dec; 13(12):6357-6372. PubMed ID: 36589594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Texture preservation and speckle reduction in poor optical coherence tomography using the convolutional neural network.
    Xu M; Tang C; Hao F; Chen M; Lei Z
    Med Image Anal; 2020 Aug; 64():101727. PubMed ID: 32497871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Speckle Noise Reduction for OCT Images Based on Image Style Transfer and Conditional GAN.
    Zhou Y; Yu K; Wang M; Ma Y; Peng Y; Chen Z; Zhu W; Shi F; Chen X
    IEEE J Biomed Health Inform; 2022 Jan; 26(1):139-150. PubMed ID: 33882009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.