These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 29027022)
1. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation. Zhang X; Kim D; Shen S; Yuan P; Liu S; Tang Z; Zhang G; Zhou X; Gateno J; Liebschner MAK; Xia JJ Biomech Model Mechanobiol; 2018 Apr; 17(2):387-402. PubMed ID: 29027022 [TBL] [Abstract][Full Text] [Related]
2. An eFace-Template Method for Efficiently Generating Patient-Specific Anatomically-Detailed Facial Soft Tissue FE Models for Craniomaxillofacial Surgery Simulation. Zhang X; Tang Z; Liebschner MA; Kim D; Shen S; Chang CM; Yuan P; Zhang G; Gateno J; Zhou X; Zhang SX; Xia JJ Ann Biomed Eng; 2016 May; 44(5):1656-71. PubMed ID: 26464269 [TBL] [Abstract][Full Text] [Related]
3. A voxel-based finite element model for the prediction of bladder deformation. Chai X; van Herk M; Hulshof MC; Bel A Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275 [TBL] [Abstract][Full Text] [Related]
4. Orbital and maxillofacial computer aided surgery: patient-specific finite element models to predict surgical outcomes. Luboz V; Chabanas M; Swider P; Payan Y Comput Methods Biomech Biomed Engin; 2005 Aug; 8(4):259-65. PubMed ID: 16298848 [TBL] [Abstract][Full Text] [Related]
5. Mesh-morphing algorithms for specimen-specific finite element modeling. Sigal IA; Hardisty MR; Whyne CM J Biomech; 2008; 41(7):1381-9. PubMed ID: 18397789 [TBL] [Abstract][Full Text] [Related]
7. Finite element speaker-specific face model generation for the study of speech production. Bucki M; Nazari MA; Payan Y Comput Methods Biomech Biomed Engin; 2010 Aug; 13(4):459-67. PubMed ID: 20635262 [TBL] [Abstract][Full Text] [Related]
8. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation. Salo Z; Beek M; Wright D; Whyne CM J Biomech; 2015 Apr; 48(6):1125-32. PubMed ID: 25680299 [TBL] [Abstract][Full Text] [Related]
9. Anatomically-driven soft-tissue simulation strategy for cranio-maxillofacial surgery using facial muscle template model. Kim H; Jürgens P; Nolte LP; Reyes M Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):61-8. PubMed ID: 20879215 [TBL] [Abstract][Full Text] [Related]
10. Geometric modeling of living tissue for subject-specific finite element analysis. Tada M; Yoshida H; Mochimaru M Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6639-42. PubMed ID: 17959473 [TBL] [Abstract][Full Text] [Related]
11. A fast and robust patient specific Finite Element mesh registration technique: application to 60 clinical cases. Bucki M; Lobos C; Payan Y Med Image Anal; 2010 Jun; 14(3):303-17. PubMed ID: 20299273 [TBL] [Abstract][Full Text] [Related]
12. Prediction of soft tissue deformations after CMF surgery with incremental kernel ridge regression. Pan B; Zhang G; Xia JJ; Yuan P; Ip HH; He Q; Lee PK; Chow B; Zhou X Comput Biol Med; 2016 Aug; 75():1-9. PubMed ID: 27213920 [TBL] [Abstract][Full Text] [Related]
13. Improved Rubin-Bodner model for the prediction of soft tissue deformations. Zhang G; Xia JJ; Liebschner M; Zhang X; Kim D; Zhou X Med Eng Phys; 2016 Nov; 38(11):1369-1375. PubMed ID: 27717593 [TBL] [Abstract][Full Text] [Related]
14. Craniofacial reconstruction using a combined statistical model of face shape and soft tissue depths: methodology and validation. Claes P; Vandermeulen D; De Greef S; Willems G; Suetens P Forensic Sci Int; 2006 May; 159 Suppl 1():S147-58. PubMed ID: 16540276 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur. Grassi L; Hraiech N; Schileo E; Ansaloni M; Rochette M; Viceconti M Med Eng Phys; 2011 Jan; 33(1):112-20. PubMed ID: 21036655 [TBL] [Abstract][Full Text] [Related]
16. Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Chabanas M; Luboz V; Payan Y Med Image Anal; 2003 Jun; 7(2):131-51. PubMed ID: 12868618 [TBL] [Abstract][Full Text] [Related]
17. A clinically validated prediction method for facial soft-tissue changes following double-jaw surgery. Kim D; Ho DC; Mai H; Zhang X; Shen SGF; Shen S; Yuan P; Liu S; Zhang G; Zhou X; Gateno J; Liebschner MAK; Xia JJ Med Phys; 2017 Aug; 44(8):4252-4261. PubMed ID: 28570001 [TBL] [Abstract][Full Text] [Related]
18. [Individualized three-dimensional finite element model of facial soft tissue and preliminary application in orthodontics]. Chen S; Xu TM; Lou HD; Rong QG Zhonghua Kou Qiang Yi Xue Za Zhi; 2012 Dec; 47(12):730-4. PubMed ID: 23328098 [TBL] [Abstract][Full Text] [Related]
19. Template-based finite-element mesh generation from medical images. Baghdadi L; Steinman DA; Ladak HM Comput Methods Programs Biomed; 2005 Jan; 77(1):11-21. PubMed ID: 15639706 [TBL] [Abstract][Full Text] [Related]
20. Use of the dynamic volume spline method to predict facial soft tissue changes associated with orthognathic surgery. Ulusoy I; Akagunduz E; Sabuncuoglu F; Gorgulu S; Ucok O Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Nov; 110(5):e17-23. PubMed ID: 20955940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]