These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 29027087)

  • 1. The effect of using a dielectric matching medium in focused microwave radiometry: an anatomically detailed head model study.
    Koutsoupidou M; Groumpas E; Karanasiou IS; Christopoulou M; Nikita K; Uzunoglu N
    Med Biol Eng Comput; 2018 May; 56(5):809-816. PubMed ID: 29027087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contactless passive diagnosis for brain intracranial applications: A study using dielectric matching materials.
    Gouzouasis IA; Karathanasis KT; Karanasiou IS; Uzunoglu NK
    Bioelectromagnetics; 2010 Jul; 31(5):335-49. PubMed ID: 20196113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study of a hybrid microwave radiometry-hyperthermia apparatus with the use of an anatomical head phantom.
    Karathanasis KT; Gouzouasis IA; Karanasiou IS; Uzunoglu NK
    IEEE Trans Inf Technol Biomed; 2012 Mar; 16(2):241-7. PubMed ID: 22334031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of Conductivity Changes of Excitable Tissues Based on Focused Passive Microwave.
    Karanasiou I
    Open Biomed Eng J; 2015; 9():138-45. PubMed ID: 26312074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive focused monitoring and irradiation of head tissue phantoms at microwave frequencies.
    Karathanasis KT; Gouzouasis IA; Karanasiou IS; Giamalaki MI; Stratakos G; Uzunoglu NK
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):657-63. PubMed ID: 20350846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the focusing properties of an ellipsoidal beamformer based imaging system: a simulation study.
    Trichopoulos GC; Karanasiou IS; Uzunoglu NK
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5097-100. PubMed ID: 17946675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Passive Brain Monitoring System Using Near-Field Microwave Radiometry.
    Groumpas E; Koutsoupidou M; Karanasiou IS; Papageorgiou C; Uzunoglu N
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):158-165. PubMed ID: 30969913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive monitoring using a combination of focused and phased array radiometry: a simulation study.
    Farantatos P; Karanasiou IS; Uzunoglu N
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():501-4. PubMed ID: 22254358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FDTD study of the focusing properties of a hybrid hyperthermia and radiometry imaging system using a realistic human head model.
    Gouzouasis IA; Karanasiou IS; Uzunoglu NK
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3552-5. PubMed ID: 18002764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realistic microwave breast models through T1-weighted 3-D MRI data.
    Tunçay AH; Akduman I
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):688-98. PubMed ID: 25347868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for thermal dosimetry in microwave hyperthermia using microwave radiometry for temperature control.
    Plancot M; Prevost B; Chive M; Fabre JJ; Ledee R; Giaux G
    Int J Hyperthermia; 1987; 3(1):9-19. PubMed ID: 3559301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study of 3D contactless conductivity detection using microwave radiometry: a possible method for investigation of brain conductivity fluctuations.
    Karanasiou IS; Uzunoglu NK
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2303-6. PubMed ID: 17272189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave radiometry in living tissue: what does it measure?
    Cheever EA; Foster KR
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):563-8. PubMed ID: 1601437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature.
    Rodrigues DB; Maccarini PF; Salahi S; Oliveira TR; Pereira PJ; Limao-Vieira P; Snow BW; Reudink D; Stauffer PR
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):2154-60. PubMed ID: 24759979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vesicoureteral reflux in children: a phantom study of microwave heating and radiometric thermometry of pediatric bladder.
    Birkelund Y; Klemetsen Ø; Jacobsen SK; Arunachalam K; Maccarini P; Stauffer PR
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3269-78. PubMed ID: 21900069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive measurement of brain temperature with microwave radiometry: demonstration in a head phantom and clinical case.
    Stauffer PR; Snow BW; Rodrigues DB; Salahi S; Oliveira TR; Reudink D; Maccarini PF
    Neuroradiol J; 2014 Feb; 27(1):3-12. PubMed ID: 24571829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifrequency microwave thermograph for biomedical applications.
    Stec B; Dobrowolski A; Susek W
    IEEE Trans Biomed Eng; 2004 Mar; 51(3):548-51. PubMed ID: 15000388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the detectability of vesicoureteral reflux using microwave radiometry.
    Arunachalam K; Maccarini PF; De Luca V; Bardati F; Snow BW; Stauffer PR
    Phys Med Biol; 2010 Sep; 55(18):5417-35. PubMed ID: 20736499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave radiometry for continuous non-contact temperature measurements during microwave heating.
    Stephan KD; Pearce JA
    J Microw Power Electromagn Energy; 2005; 40(1):49-61. PubMed ID: 16673833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature elevation in the eye of anatomically based human head models for plane-wave exposures.
    Hirata A; Watanabe S; Fujiwara O; Kojima M; Sasaki K; Shiozawa T
    Phys Med Biol; 2007 Nov; 52(21):6389-99. PubMed ID: 17951850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.