BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

510 related articles for article (PubMed ID: 29027094)

  • 21. Awake Mouse Imaging: From Two-Photon Microscopy to Blood Oxygen Level-Dependent Functional Magnetic Resonance Imaging.
    Desjardins M; Kılıç K; Thunemann M; Mateo C; Holland D; Ferri CGL; Cremonesi JA; Li B; Cheng Q; Weldy KL; Saisan PA; Kleinfeld D; Komiyama T; Liu TT; Bussell R; Wong EC; Scadeng M; Dunn AK; Boas DA; Sakadžić S; Mandeville JB; Buxton RB; Dale AM; Devor A
    Biol Psychiatry Cogn Neurosci Neuroimaging; 2019 Jun; 4(6):533-542. PubMed ID: 30691968
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing activation-induced neurochemical changes using optogenetics combined with functional magnetic resonance spectroscopy: a feasibility study in the rat primary somatosensory cortex.
    Just N; Faber C
    J Neurochem; 2019 Aug; 150(4):402-419. PubMed ID: 31222733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Whole-brain mapping of effective connectivity by fMRI with cortex-wide patterned optogenetics.
    Kim S; Moon HS; Vo TT; Kim CH; Im GH; Lee S; Choi M; Kim SG
    Neuron; 2023 Jun; 111(11):1732-1747.e6. PubMed ID: 37001524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. All-Optical Interrogation of Neural Circuits.
    Emiliani V; Cohen AE; Deisseroth K; Häusser M
    J Neurosci; 2015 Oct; 35(41):13917-26. PubMed ID: 26468193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-sensitivity detection of optogenetically-induced neural activity with functional ultrasound imaging.
    Edelman BJ; Ielacqua GD; Chan RW; Asaad M; Choy M; Lee JH
    Neuroimage; 2021 Nov; 242():118434. PubMed ID: 34333106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mapping optogenetically-driven single-vessel fMRI with concurrent neuronal calcium recordings in the rat hippocampus.
    Chen X; Sobczak F; Chen Y; Jiang Y; Qian C; Lu Z; Ayata C; Logothetis NK; Yu X
    Nat Commun; 2019 Nov; 10(1):5239. PubMed ID: 31748553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies.
    Liu J; Duffy BA; Bernal-Casas D; Fang Z; Lee JH
    Neuroimage; 2017 Feb; 147():390-408. PubMed ID: 27993672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping the Brain-Wide Network Effects by Optogenetic Activation of the Corpus Callosum.
    Chen Y; Sobczak F; Pais-Roldán P; Schwarz C; Koretsky AP; Yu X
    Cereb Cortex; 2020 Oct; 30(11):5885-5898. PubMed ID: 32556241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optogenetic activation of CA1 pyramidal neurons at the dorsal and ventral hippocampus evokes distinct brain-wide responses revealed by mouse fMRI.
    Takata N; Yoshida K; Komaki Y; Xu M; Sakai Y; Hikishima K; Mimura M; Okano H; Tanaka KF
    PLoS One; 2015; 10(3):e0121417. PubMed ID: 25793741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal.
    Logothetis NK
    Philos Trans R Soc Lond B Biol Sci; 2002 Aug; 357(1424):1003-37. PubMed ID: 12217171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Establishing a fiber-optic-based optical neural interface.
    Adamantidis AR; Zhang F; de Lecea L; Deisseroth K
    Cold Spring Harb Protoc; 2014 Aug; 2014(8):839-44. PubMed ID: 25086020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MRI compatible optrodes for simultaneous LFP and optogenetic fMRI investigation of seizure-like afterdischarges.
    Duffy BA; Choy M; Chuapoco MR; Madsen M; Lee JH
    Neuroimage; 2015 Dec; 123():173-84. PubMed ID: 26208873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode.
    Libbrecht S; Hoffman L; Welkenhuysen M; Van den Haute C; Baekelandt V; Braeken D; Haesler S
    J Neurophysiol; 2018 Jul; 120(1):149-161. PubMed ID: 29589813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo.
    Packer AM; Russell LE; Dalgleish HW; Häusser M
    Nat Methods; 2015 Feb; 12(2):140-6. PubMed ID: 25532138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Macroscale variation in resting-state neuronal activity and connectivity assessed by simultaneous calcium imaging, hemodynamic imaging and electrophysiology.
    Murphy MC; Chan KC; Kim SG; Vazquez AL
    Neuroimage; 2018 Apr; 169():352-362. PubMed ID: 29277650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain-state dependent astrocytic Ca
    Wang M; He Y; Sejnowski TJ; Yu X
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1647-E1656. PubMed ID: 29382752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural and hemodynamic responses to optogenetic and sensory stimulation in the rat somatosensory cortex.
    Iordanova B; Vazquez AL; Poplawsky AJ; Fukuda M; Kim SG
    J Cereb Blood Flow Metab; 2015 Jun; 35(6):922-32. PubMed ID: 25669905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A flexible and versatile system for multi-color fiber photometry and optogenetic manipulation.
    Formozov A; Dieter A; Wiegert JS
    Cell Rep Methods; 2023 Mar; 3(3):100418. PubMed ID: 37056369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mesh-based Monte Carlo method for fibre-optic optogenetic neural stimulation with direct photon flux recording strategy.
    Shin Y; Kwon HS
    Phys Med Biol; 2016 Mar; 61(6):2265-82. PubMed ID: 26914289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.