BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

510 related articles for article (PubMed ID: 29027094)

  • 41. A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates.
    Ozden I; Wang J; Lu Y; May T; Lee J; Goo W; O'Shea DJ; Kalanithi P; Diester I; Diagne M; Deisseroth K; Shenoy KV; Nurmikko AV
    J Neurosci Methods; 2013 Sep; 219(1):142-54. PubMed ID: 23867081
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differential coupling between subcortical calcium and BOLD signals during evoked and resting state through simultaneous calcium fiber photometry and fMRI.
    Tong C; Dai JK; Chen Y; Zhang K; Feng Y; Liang Z
    Neuroimage; 2019 Oct; 200():405-413. PubMed ID: 31280011
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neural Activity Elicited by a Cognitive Task can be Detected in Single-Trials with Simultaneous Intracerebral EEG-fMRI Recordings.
    Saignavongs M; Ciumas C; Petton M; Bouet R; Boulogne S; Rheims S; Carmichael DW; Lachaux JP; Ryvlin P
    Int J Neural Syst; 2017 Feb; 27(1):1750001. PubMed ID: 27718767
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain.
    Bovetti S; Moretti C; Zucca S; Dal Maschio M; Bonifazi P; Fellin T
    Sci Rep; 2017 Jan; 7():40041. PubMed ID: 28053310
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Integration of EEG source imaging and fMRI during continuous viewing of natural movies.
    Whittingstall K; Bartels A; Singh V; Kwon S; Logothetis NK
    Magn Reson Imaging; 2010 Oct; 28(8):1135-42. PubMed ID: 20579829
    [TBL] [Abstract][Full Text] [Related]  

  • 46. fMRI response to blue light delivery in the naïve brain: implications for combined optogenetic fMRI studies.
    Christie IN; Wells JA; Southern P; Marina N; Kasparov S; Gourine AV; Lythgoe MF
    Neuroimage; 2013 Feb; 66():634-41. PubMed ID: 23128081
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Longitudinal observations using simultaneous fMRI, multiple channel electrophysiology recording, and chemical microiontophoresis in the rat brain.
    Jaime S; Cavazos JE; Yang Y; Lu H
    J Neurosci Methods; 2018 Aug; 306():68-76. PubMed ID: 29778509
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-density multi-fiber photometry for studying large-scale brain circuit dynamics.
    Sych Y; Chernysheva M; Sumanovski LT; Helmchen F
    Nat Methods; 2019 Jun; 16(6):553-560. PubMed ID: 31086339
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of the functional MRI response temporal linearity via optical control of neocortical pyramidal neurons.
    Kahn I; Desai M; Knoblich U; Bernstein J; Henninger M; Graybiel AM; Boyden ES; Buckner RL; Moore CI
    J Neurosci; 2011 Oct; 31(42):15086-91. PubMed ID: 22016542
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multifunctional optrode for opsin delivery, optical stimulation, and electrophysiological recordings in freely moving rats.
    Sharma K; Jäckel Z; Schneider A; Paul O; Diester I; Ruther P
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34795066
    [No Abstract]   [Full Text] [Related]  

  • 51. Optogenetic drive of neocortical pyramidal neurons generates fMRI signals that are correlated with spiking activity.
    Kahn I; Knoblich U; Desai M; Bernstein J; Graybiel AM; Boyden ES; Buckner RL; Moore CI
    Brain Res; 2013 May; 1511():33-45. PubMed ID: 23523914
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Focal fMRI signal enhancement with implantable inductively coupled detectors.
    Chen Y; Wang Q; Choi S; Zeng H; Takahashi K; Qian C; Yu X
    Neuroimage; 2022 Feb; 247():118793. PubMed ID: 34896291
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mapping the functional network of medial prefrontal cortex by combining optogenetics and fMRI in awake rats.
    Liang Z; Watson GD; Alloway KD; Lee G; Neuberger T; Zhang N
    Neuroimage; 2015 Aug; 117():114-23. PubMed ID: 26002727
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optogenetic fMRI in the mouse hippocampus: Hemodynamic response to brief glutamatergic stimuli.
    Lebhardt P; Hohenberg CC; Weber-Fahr W; Kelsch W; Sartorius A
    J Cereb Blood Flow Metab; 2016 Mar; 36(3):629-38. PubMed ID: 26661158
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Integration of multimodal neuroimaging methods: a rationale for clinical applications of simultaneous EEG-fMRI.
    Vitali P; Di Perri C; Vaudano AE; Meletti S; Villani F
    Funct Neurol; 2015; 30(1):9-20. PubMed ID: 26214023
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Validation of the hypercapnic calibrated fMRI method using DOT-fMRI fusion imaging.
    Yücel MA; Evans KC; Selb J; Huppert TJ; Boas DA; Gagnon L
    Neuroimage; 2014 Nov; 102 Pt 2(0 2):729-35. PubMed ID: 25196509
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of a novel optogenetic indicator based on cellular deformations for mapping optogenetic activities.
    Li G; Yang J; Wang Y; Wang W; Liu L
    Nanoscale; 2018 Dec; 10(45):21046-21051. PubMed ID: 30276394
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contributions of dopaminergic and non-dopaminergic neurons to VTA-stimulation induced neurovascular responses in brain reward circuits.
    Brocka M; Helbing C; Vincenz D; Scherf T; Montag D; Goldschmidt J; Angenstein F; Lippert M
    Neuroimage; 2018 Aug; 177():88-97. PubMed ID: 29723641
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simultaneous EEG-fMRI at ultra-high field: artifact prevention and safety assessment.
    Jorge J; Grouiller F; Ipek Ö; Stoermer R; Michel CM; Figueiredo P; van der Zwaag W; Gruetter R
    Neuroimage; 2015 Jan; 105():132-44. PubMed ID: 25449743
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.