These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 29027458)

  • 1. The Stringent Response Induced by Phosphate Limitation Promotes Purine Salvage in Agrobacterium fabrum.
    Sivapragasam S; Deochand DK; Meariman JK; Grove A
    Biochemistry; 2017 Oct; 56(43):5831-5843. PubMed ID: 29027458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streptomyces coelicolor XdhR is a direct target of (p)ppGpp that controls expression of genes encoding xanthine dehydrogenase to promote purine salvage.
    Sivapragasam S; Grove A
    Mol Microbiol; 2016 May; 100(4):701-18. PubMed ID: 26833627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similar solutions to a common challenge: regulation of genes encoding Ralstonia solanacearum xanthine dehydrogenase.
    Sivapragasam S; Ghosh A; Kumar S; Johnson DT; Grove A
    FEMS Microbiol Lett; 2021 Mar; 368(4):. PubMed ID: 33620442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription Factor PecS Mediates
    Nwokocha GC; Adhikari P; Iqbal A; Elkholy H; Doerrler WT; Larkin JC; Grove A
    J Bacteriol; 2023 Jul; 205(7):e0047822. PubMed ID: 37314346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Streptomyces coelicolor encodes a urate-responsive transcriptional regulator with homology to PecS from plant pathogens.
    Huang H; Mackel BJ; Grove A
    J Bacteriol; 2013 Nov; 195(21):4954-65. PubMed ID: 23995633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Urate is a ligand for the transcriptional regulator PecS.
    Perera IC; Grove A
    J Mol Biol; 2010 Sep; 402(3):539-51. PubMed ID: 20678501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purine-Induced IFN-γ Promotes Uric Acid Production by Upregulating Xanthine Oxidoreductase Expression.
    Wang H; Xie L; Song X; Wang J; Li X; Lin Z; Su T; Liang B; Huang D
    Front Immunol; 2022; 13():773001. PubMed ID: 35154100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agrobacterium fabrum gene atu1420 regulates the pathogenicity by affecting the degradation of growth- and virulence-associated phenols.
    Wang H; Zhang M; Wang E; Xiao R; Zhang S; Guo M
    Res Microbiol; 2023; 174(3):104011. PubMed ID: 36455782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in the Atxdh1 Arabidopsis mutant.
    Brychkova G; Alikulov Z; Fluhr R; Sagi M
    Plant J; 2008 May; 54(3):496-509. PubMed ID: 18266920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage.
    Xi H; Schneider BL; Reitzer L
    J Bacteriol; 2000 Oct; 182(19):5332-41. PubMed ID: 10986234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA interference-mediated suppression of xanthine dehydrogenase reveals the role of purine metabolism in drought tolerance in Arabidopsis.
    Watanabe S; Nakagawa A; Izumi S; Shimada H; Sakamoto A
    FEBS Lett; 2010 Mar; 584(6):1181-6. PubMed ID: 20153325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purine utilization by Klebsiella oxytoca M5al: genes for ring-oxidizing and -opening enzymes.
    Pope SD; Chen LL; Stewart V
    J Bacteriol; 2009 Feb; 191(3):1006-17. PubMed ID: 19060149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of levels of purine biosynthetic enzymes in Bacillus subtilis: effects of changing purine nucleotide pools.
    Saxild HH; Nygaard P
    J Gen Microbiol; 1991 Oct; 137(10):2387-94. PubMed ID: 1722815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate Limitation Induces Drastic Physiological Changes, Virulence-Related Gene Expression, and Secondary Metabolite Production in Pseudovibrio sp. Strain FO-BEG1.
    Romano S; Schulz-Vogt HN; González JM; Bondarev V
    Appl Environ Microbiol; 2015 May; 81(10):3518-28. PubMed ID: 25769826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate limitation induces catalase expression in Sinorhizobium meliloti, Pseudomonas aeruginosa and Agrobacterium tumefaciens.
    Yuan ZC; Zaheer R; Finan TM
    Mol Microbiol; 2005 Nov; 58(3):877-94. PubMed ID: 16238634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Completing the purine utilisation pathway of Aspergillus nidulans.
    Gournas C; Oestreicher N; Amillis S; Diallinas G; Scazzocchio C
    Fungal Genet Biol; 2011 Aug; 48(8):840-8. PubMed ID: 21419234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for Vibrio vulnificus PecS during hypoxia.
    Bhattacharyya N; Lemon TL; Grove A
    Sci Rep; 2019 Feb; 9(1):2797. PubMed ID: 30808913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate depletion: a novel trigger for Mycobacterium tuberculosis persistence.
    Rifat D; Bishai WR; Karakousis PC
    J Infect Dis; 2009 Oct; 200(7):1126-35. PubMed ID: 19686042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired purine homeostasis plays a primary role in trimethoprim-mediated induction of virulence genes in Burkholderia thailandensis.
    Thapa SS; Grove A
    Mol Microbiol; 2021 Apr; 115(4):610-622. PubMed ID: 33053234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase.
    Brockmann-Gretza O; Kalinowski J
    BMC Genomics; 2006 Sep; 7():230. PubMed ID: 16961923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.