These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 29027582)

  • 1. Bioleaching of Gold and Silver from Waste Printed Circuit Boards by Pseudomonas balearica SAE1 Isolated from an e-Waste Recycling Facility.
    Kumar A; Saini HS; Kumar S
    Curr Microbiol; 2018 Feb; 75(2):194-201. PubMed ID: 29027582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of gold and silver recovery from discarded computer printed circuit boards by
    Kumar A; Saini HS; Kumar S
    3 Biotech; 2018 Feb; 8(2):100. PubMed ID: 29430362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new strain for recovering precious metals from waste printed circuit boards.
    Ruan J; Zhu X; Qian Y; Hu J
    Waste Manag; 2014 May; 34(5):901-7. PubMed ID: 24630215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pretreatment of low-grade shredded dust e-waste to enhance silver recovery through biocyanidation by
    Thakur P; Kumar S
    3 Biotech; 2021 Nov; 11(11):454. PubMed ID: 34616648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and identification of Penicillium chrysogenum strain Y5 and its copper extraction characterization from waste printed circuit boards.
    Xia MC; Bao P; Liu AJ; Zhang SS; Peng TJ; Shen L; Yu RL; Wu XL; Li JK; Liu YD; Chen M; Qiu GZ; Zeng WM
    J Biosci Bioeng; 2018 Jul; 126(1):78-87. PubMed ID: 29573983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB).
    Işıldar A; van de Vossenberg J; Rene ER; van Hullebusch ED; Lens PN
    Waste Manag; 2016 Nov; 57():149-157. PubMed ID: 26704063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioleaching of metals from waste printed circuit boards using bacterial isolates native to abandoned gold mine.
    Kumar A; Saini HS; Şengör S; Sani RK; Kumar S
    Biometals; 2021 Oct; 34(5):1043-1058. PubMed ID: 34213670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones.
    Shah MB; Tipre DR; Dave SR
    Waste Manag Res; 2014 Nov; 32(11):1134-41. PubMed ID: 25278513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of silver halos by Sphingomonas paucimobilis MX8 and its bioleaching of silver from computer keyboard printed circuit boards.
    Argumedo-Delira R; Díaz-Martinez ME; Martínez MJG
    Braz J Microbiol; 2023 Sep; 54(3):1689-1693. PubMed ID: 37171535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioleaching assisted foam fractionation for recovery of gold from the printed circuit boards of discarded cellphone.
    Zhou G; Zhang H; Yang W; Wu Z; Liu W; Yang C
    Waste Manag; 2020 Jan; 101():200-209. PubMed ID: 31622865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient approach for enhancement of gold and silver bioleaching from spent telecommunication printed circuit boards using cyanogenic bacteria: Prevention of biofilm formation.
    Beiki V; Naseri T; Mousavi SM
    Waste Manag; 2023 Oct; 171():590-598. PubMed ID: 37826899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of precious metals positioning in waste printed circuit boards and the economic benefits of recycling.
    Huang T; Zhu J; Huang X; Ruan J; Xu Z
    Waste Manag; 2022 Feb; 139():105-115. PubMed ID: 34959086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.
    Xiu FR; Qi Y; Zhang FS
    Waste Manag; 2015 Jul; 41():134-41. PubMed ID: 25802060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of Pseudomonas sp. strain HF-1, capable of degrading nicotine.
    Ruan A; Min H; Peng X; Huang Z
    Res Microbiol; 2005; 156(5-6):700-6. PubMed ID: 15921891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiourea bioleaching for gold recycling from e-waste.
    Rizki IN; Tanaka Y; Okibe N
    Waste Manag; 2019 Feb; 84():158-165. PubMed ID: 30691888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones.
    Jing-ying L; Xiu-li X; Wen-quan L
    Waste Manag; 2012 Jun; 32(6):1209-12. PubMed ID: 22386109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of simultaneous gold and copper recovery from discarded mobile phone PCBs using Bacillus megaterium: RSM based optimization of effective factors and evaluation of their interactions.
    Arshadi M; Mousavi SM; Rasoulnia P
    Waste Manag; 2016 Nov; 57():158-167. PubMed ID: 27264460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold biorecovery from e-waste: An improved strategy through spent medium leaching with pH modification.
    Natarajan G; Ting YP
    Chemosphere; 2015 Oct; 136():232-8. PubMed ID: 26025187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Designed Bioreactor for Recovering Precious Metals from Waste Printed Circuit Boards.
    Jujun R; Jie Z; Jian H; Zhang J
    Sci Rep; 2015 Aug; 5():13481. PubMed ID: 26316021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofilm for leaching precious metals from waste printed circuit boards using biocyanidation technology.
    Hu J; Tang Y; Ai F; Lin M; Ruan J
    J Hazard Mater; 2021 Feb; 403():123586. PubMed ID: 32795820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.