These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
746 related articles for article (PubMed ID: 29027818)
1. Effects of nesfatin-1 on atrial contractility and thoracic aorta reactivity in male rats. Barutcigil A; Tasatargil A Clin Exp Hypertens; 2018; 40(5):414-420. PubMed ID: 29027818 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms underlying the vasorelaxing effects of butylidenephthalide, an active constituent of Ligusticum chuanxiong, in rat isolated aorta. Chan SS; Choi AO; Jones RL; Lin G Eur J Pharmacol; 2006 May; 537(1-3):111-7. PubMed ID: 16624277 [TBL] [Abstract][Full Text] [Related]
3. The inhibitory action of protamine on human internal thoracic artery contractions: the effect of free hemoglobin. Golbasi I; Nacitarhan C; Ozdem S; Turkay C; Karakaya H; Sadan G; Bayezid O Eur J Cardiothorac Surg; 2003 Jun; 23(6):962-8. PubMed ID: 12829073 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms underlying vasorelaxant action of astragaloside IV in isolated rat aortic rings. Zhang C; Wang XH; Zhong MF; Liu RH; Li HL; Zhang WD; Chen H Clin Exp Pharmacol Physiol; 2007; 34(5-6):387-92. PubMed ID: 17439405 [TBL] [Abstract][Full Text] [Related]
5. Modulation of vascular reactivity in normal, hypertensive and diabetic rat aortae by a non-antioxidant flavonoid. Ajay M; Achike FI; Mustafa MR Pharmacol Res; 2007 May; 55(5):385-91. PubMed ID: 17317209 [TBL] [Abstract][Full Text] [Related]
6. Impairment of smooth muscle function of rat thoracic aorta in an endothelium-independent manner by long-term administration of N(G)-nitro-L-arginine methyl ester. López RM; Ortíz CS; Ruíz A; Vélez JM; Castillo C; Castillo EF Fundam Clin Pharmacol; 2004 Dec; 18(6):669-77. PubMed ID: 15548238 [TBL] [Abstract][Full Text] [Related]
7. High-salt diet enhances vascular reactivity in pregnant rats with normal and reduced uterine perfusion pressure. Barron LA; Giardina JB; Granger JP; Khalil RA Hypertension; 2001 Sep; 38(3 Pt 2):730-5. PubMed ID: 11566966 [TBL] [Abstract][Full Text] [Related]
8. Interleukin-6 impairs endothelium-dependent NO-cGMP-mediated relaxation and enhances contraction in systemic vessels of pregnant rats. Orshal JM; Khalil RA Am J Physiol Regul Integr Comp Physiol; 2004 Jun; 286(6):R1013-23. PubMed ID: 15142856 [TBL] [Abstract][Full Text] [Related]
9. Endothelial nitric oxide attenuates Na+/Ca2+ exchanger-mediated vasoconstriction in rat aorta. Zhao J; Majewski H Br J Pharmacol; 2008 Jul; 154(5):982-90. PubMed ID: 18469841 [TBL] [Abstract][Full Text] [Related]
10. Dual effect of cobra cardiotoxin on vascular smooth muscle and endothelium. Ho KH; Kwan CY; Huang SJ; Bourreau JP Zhongguo Yao Li Xue Bao; 1998 May; 19(3):197-202. PubMed ID: 10375725 [TBL] [Abstract][Full Text] [Related]
11. Endothelial nitric oxide has inhibitory effects on rhythmic contractions in the aortas of sinoaortic deafferented rats. Rocha ML; Bendhack LM J Cardiovasc Pharmacol; 2007 Nov; 50(5):510-8. PubMed ID: 18030060 [TBL] [Abstract][Full Text] [Related]
12. The role of endothelium in the calcium-induced reduction of the contractile response of the rabbit aorta. Ortega A; Puerro M; Lopez-Miranda V; Aleixandre A Gen Pharmacol; 1997 May; 28(5):745-52. PubMed ID: 9184813 [TBL] [Abstract][Full Text] [Related]
13. Ursolic acid mediates the vasorelaxant activity of Lepechinia caulescens via NO release in isolated rat thoracic aorta. Aguirre-Crespo F; Vergara-Galicia J; Villalobos-Molina R; Javier López-Guerrero J; Navarrete-Vázquez G; Estrada-Soto S Life Sci; 2006 Aug; 79(11):1062-8. PubMed ID: 16630635 [TBL] [Abstract][Full Text] [Related]
14. Vasorelaxing effects of propranolol in rat aorta and mesenteric artery: a role for nitric oxide and calcium entry blockade. Priviero FB; Teixeira CE; Toque HA; Claudino MA; Webb RC; De Nucci G; Zanesco A; Antunes E Clin Exp Pharmacol Physiol; 2006; 33(5-6):448-55. PubMed ID: 16700877 [TBL] [Abstract][Full Text] [Related]
15. Role of endothelium, acetylocholine and calcium ions in Bay K8644- and KCl-induced contraction. Szadujkis-Szadurska K; Grzesk G; Szadujkis-Szadurski L; Gajdus M; Malinowski B; Wicinski M Mol Med Rep; 2013 Sep; 8(3):914-8. PubMed ID: 23836047 [TBL] [Abstract][Full Text] [Related]
16. Type 1 diabetes and hypercholesterolaemia reveal the contribution of endothelium-derived hyperpolarizing factor to endothelium-dependent relaxation of the rat aorta. Malakul W; Thirawarapan S; Suvitayavat W; Woodman OL Clin Exp Pharmacol Physiol; 2008 Feb; 35(2):192-200. PubMed ID: 17941894 [TBL] [Abstract][Full Text] [Related]
17. Central role of heterocellular gap junctional communication in endothelium-dependent relaxations of rabbit arteries. Chaytor AT; Evans WH; Griffith TM J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):561-73. PubMed ID: 9508817 [TBL] [Abstract][Full Text] [Related]
18. Pharmacological profile of T-1032, a novel specific phosphodiesterase type 5 inhibitor, in isolated rat aorta and rabbit corpus cavernosum. Takagi M; Mochida H; Noto T; Yano K; Inoue H; Ikeo T; Kikkawa K Eur J Pharmacol; 2001 Jan; 411(1-2):161-168. PubMed ID: 11137871 [TBL] [Abstract][Full Text] [Related]
19. Vascular effects of caffeic acid phenethyl ester (CAPE) on isolated rat thoracic aorta. Cicala C; Morello S; Iorio C; Capasso R; Borrelli F; Mascolo N Life Sci; 2003 May; 73(1):73-80. PubMed ID: 12726888 [TBL] [Abstract][Full Text] [Related]
20. Expression and functional role of the RhoA/Rho-kinase pathway in rat coeliac artery. Teixeira CE; Jin L; Ying Z; Palmer T; Priviero FB; Webb RC Clin Exp Pharmacol Physiol; 2005 Oct; 32(10):817-24. PubMed ID: 16173942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]