These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29028032)

  • 1. Proof-of-principle implementation of a quantum random number generator with independent devices and a dimension witness.
    An XB; Han YG; Yin ZQ; Huang W; Chen W; Wang S; Guo GC; Han ZF
    Opt Lett; 2017 Oct; 42(20):4139-4142. PubMed ID: 29028032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-testing quantum random number generator.
    Lunghi T; Brask JB; Lim CC; Lavigne Q; Bowles J; Martin A; Zbinden H; Brunner N
    Phys Rev Lett; 2015 Apr; 114(15):150501. PubMed ID: 25933297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tighter bound of quantum randomness certification for independent-devices scenario.
    Fei XW; Yin ZQ; Huang W; Xu BJ; Wang S; Chen W; Han YG; Guo GC; Han ZF
    Sci Rep; 2017 Nov; 7(1):14666. PubMed ID: 29116193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental three-party quantum random number generator based on dimension witness violation and weak measurement.
    An XB; Li HW; Yin ZQ; Hu MJ; Huang W; Xu BJ; Wang S; Chen W; Guo GC; Han ZF
    Opt Lett; 2018 Jul; 43(14):3437-3440. PubMed ID: 30004524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum random number generator using a cloud superconducting quantum computer based on source-independent protocol.
    Li Y; Fei Y; Wang W; Meng X; Wang H; Duan Q; Ma Z
    Sci Rep; 2021 Dec; 11(1):23873. PubMed ID: 34903802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Realization of a Quantum Random Generator Certified with the Kochen-Specker Theorem.
    Kulikov A; Jerger M; Potočnik A; Wallraff A; Fedorov A
    Phys Rev Lett; 2017 Dec; 119(24):240501. PubMed ID: 29286749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Gaussian-Distributed Quantum Random Number Generator Using Vacuum Shot Noise.
    Huang M; Chen Z; Zhang Y; Guo H
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Certifying the dimension of classical and quantum systems in a prepare-and-measure scenario with independent devices.
    Bowles J; Quintino MT; Brunner N
    Phys Rev Lett; 2014 Apr; 112(14):140407. PubMed ID: 24765929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Realistic noise-tolerant randomness amplification using finite number of devices.
    Brandão FG; Ramanathan R; Grudka A; Horodecki K; Horodecki M; Horodecki P; Szarek T; Wojewódka H
    Nat Commun; 2016 Apr; 7():11345. PubMed ID: 27098302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 6 Gbps real-time optical quantum random number generator based on vacuum fluctuation.
    Zheng Z; Zhang Y; Huang W; Yu S; Guo H
    Rev Sci Instrum; 2019 Apr; 90(4):043105. PubMed ID: 31043049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Speed Device-Independent Quantum Random Number Generation without a Detection Loophole.
    Liu Y; Yuan X; Li MH; Zhang W; Zhao Q; Zhong J; Cao Y; Li YH; Chen LK; Li H; Peng T; Chen YA; Peng CZ; Shi SC; Wang Z; You L; Ma X; Fan J; Zhang Q; Pan JW
    Phys Rev Lett; 2018 Jan; 120(1):010503. PubMed ID: 29350962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Low-Latency Device-Independent Quantum Randomness.
    Zhang Y; Shalm LK; Bienfang JC; Stevens MJ; Mazurek MD; Nam SW; Abellán C; Amaya W; Mitchell MW; Fu H; Miller CA; Mink A; Knill E
    Phys Rev Lett; 2020 Jan; 124(1):010505. PubMed ID: 31976704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Device-independent quantum random-number generation.
    Liu Y; Zhao Q; Li MH; Guan JY; Zhang Y; Bai B; Zhang W; Liu WZ; Wu C; Yuan X; Li H; Munro WJ; Wang Z; You L; Zhang J; Ma X; Fan J; Zhang Q; Pan JW
    Nature; 2018 Oct; 562(7728):548-551. PubMed ID: 30287887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Security of Semi-Device-Independent Random Number Expansion Protocols.
    Li DD; Wen QY; Wang YK; Zhou YQ; Gao F
    Sci Rep; 2015 Oct; 5():15543. PubMed ID: 26503335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Realization of Device-Independent Quantum Randomness Expansion.
    Li MH; Zhang X; Liu WZ; Zhao SR; Bai B; Liu Y; Zhao Q; Peng Y; Zhang J; Zhang Y; Munro WJ; Ma X; Zhang Q; Fan J; Pan JW
    Phys Rev Lett; 2021 Feb; 126(5):050503. PubMed ID: 33605771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Randomness Certification by Quantum Probability Estimation.
    Zhang Y; Fu H; Knill E
    Phys Rev Res; 2020; 2(1):. PubMed ID: 33313520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Random Number Generation Using a Quanta Image Sensor.
    Amri E; Felk Y; Stucki D; Ma J; Fossum ER
    Sensors (Basel); 2016 Jun; 16(7):. PubMed ID: 27367698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental tests of classical and quantum dimensionality.
    Ahrens J; Badziąg P; Pawłowski M; Zukowski M; Bourennane M
    Phys Rev Lett; 2014 Apr; 112(14):140401. PubMed ID: 24765923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-bit quantum random number generation by measuring positions of arrival photons.
    Yan Q; Zhao B; Liao Q; Zhou N
    Rev Sci Instrum; 2014 Oct; 85(10):103116. PubMed ID: 25362380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterostructure terahertz devices.
    Ryzhii V
    J Phys Condens Matter; 2008 Aug; 20(38):380301. PubMed ID: 21693805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.