These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29028203)

  • 1. An Information Theoretical Analysis of Human Insulin-Glucose System Toward the Internet of Bio-Nano Things.
    Abbasi NA; Akan OB
    IEEE Trans Nanobioscience; 2017 Dec; 16(8):783-791. PubMed ID: 29028203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Securing Bio-Cyber Interface for the Internet of Bio-Nano Things using Particle Swarm Optimization and Artificial Neural Networks based parameter profiling.
    Zafar S; Nazir M; Sabah A; Jurcut AD
    Comput Biol Med; 2021 Sep; 136():104707. PubMed ID: 34375900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Limits on Multiuser Molecular Communication in Internet of Nano-Bio Things.
    Dinc E; Akan OB
    IEEE Trans Nanobioscience; 2017 Jun; 16(4):266-270. PubMed ID: 28422687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internet of Bio Nano Things-based FRET nanocommunications for eHealth.
    El-Atty SMA; Lizos KA; Alfarraj O; Shawki F
    Math Biosci Eng; 2023 Mar; 20(5):9246-9267. PubMed ID: 37161241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Exact Performance Analysis of Molecular Communication via Diffusion for Internet of Bio-Nano Things.
    Dissanayake MB; Ekanayake N
    IEEE Trans Nanobioscience; 2021 Jul; 20(3):291-295. PubMed ID: 33835921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Role for Bottom-Up Synthetic Cells in the Internet of Bio-Nano Things?
    Stano P; Gentili PL; Damiano L; Magarini M
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Deep Learning Techniques for Securing Bioluminescent Interfaces in Internet of Bio Nano Things.
    Bakhshi T; Zafar S
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximum Likelihood Detection With Ligand Receptors for Diffusion-Based Molecular Communications in Internet of Bio-Nano Things.
    Kuscu M; Akan OB
    IEEE Trans Nanobioscience; 2018 Mar; 17(1):44-54. PubMed ID: 29570074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capacity and Delay Spread in Multilayer Diffusion-Based Molecular Communication (DBMC) Channel.
    Md Mustam S; Syed-Yusof SK; Zubair S
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):599-612. PubMed ID: 27893397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Framework Analysis for Targeted Drug Delivery Based on Internet of Bio-NanoThings.
    El-Fatyany A; Wang H; Abd El-Atty SM
    Arab J Sci Eng; 2021; 46(10):9965-9980. PubMed ID: 33907662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling convection-diffusion-reaction systems for microfluidic molecular communications with surface-based receivers in Internet of Bio-Nano Things.
    Kuscu M; Akan OB
    PLoS One; 2018; 13(2):e0192202. PubMed ID: 29415019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Information and Communication Theoretical Understanding and Treatment of Spinal Cord Injuries: State-of-The-Art and Research Challenges.
    Akan OB; Ramezani H; Civas M; Cetinkaya O; Bilgin BA; Abbasi NA
    IEEE Rev Biomed Eng; 2023; 16():332-347. PubMed ID: 33531303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and analysis of molecular relay channels: an information theoretic approach.
    Nakano T; Liu JQ
    IEEE Trans Nanobioscience; 2010 Sep; 9(3):213-21. PubMed ID: 20525537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FRET-based nanoscale point-to-point and broadcast communications with multi-exciton transmission and channel routing.
    Kuscu M; Akan OB
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):315-26. PubMed ID: 25095261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capacity Evaluation of a Quantum-Based Channel in a Biological Context.
    Loscri V; Vegni AM
    IEEE Trans Nanobioscience; 2016 Dec; 15(8):901-907. PubMed ID: 28092502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanonetworks in Biomedical Applications.
    Marzo JL; Jornet JM; Pierobon M
    Curr Drug Targets; 2019; 20(8):800-807. PubMed ID: 30648507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Complexity Channel Codes for Reliable Molecular Communication via Diffusion.
    Figueiredo S; Souto N; Cercas F
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thresholdless Detection of Symbols in Nano-Communication Systems.
    Sharma S; Deka K; Bhatia V
    IEEE Trans Nanobioscience; 2020 Apr; 19(2):259-266. PubMed ID: 31796412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial Relay for Energy-Efficient Molecular Communications.
    Qiu S; Haselmayr W; Li B; Zhao C; Guo W
    IEEE Trans Nanobioscience; 2017 Oct; 16(7):555-562. PubMed ID: 28829314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A communication theoretical analysis of FRET-based mobile ad hoc molecular nanonetworks.
    Kuscu M; Akan OB
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):255-66. PubMed ID: 25014963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.