These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 29028306)
1. Wet Spinning of Flame-Retardant Cellulosic Fibers Supported by Interfacial Complexation of Cellulose Nanofibrils with Silica Nanoparticles. Nechyporchuk O; Bordes R; Köhnke T ACS Appl Mater Interfaces; 2017 Nov; 9(44):39069-39077. PubMed ID: 29028306 [TBL] [Abstract][Full Text] [Related]
2. Absorbent Filaments from Cellulose Nanofibril Hydrogels through Continuous Coaxial Wet Spinning. Lundahl MJ; Klar V; Ajdary R; Norberg N; Ago M; Cunha AG; Rojas OJ ACS Appl Mater Interfaces; 2018 Aug; 10(32):27287-27296. PubMed ID: 30014693 [TBL] [Abstract][Full Text] [Related]
3. Ultrastrong and flame-retardant microfibers via microfluidic wet spinning of phosphorylated cellulose nanofibrils. Ren N; Chen S; Cui M; Huang R; Qi W; He Z; Su R Carbohydr Polym; 2022 Nov; 296():119945. PubMed ID: 36087993 [TBL] [Abstract][Full Text] [Related]
4. Phosphorylated Cellulose Nanofibrils: A Renewable Nanomaterial for the Preparation of Intrinsically Flame-Retardant Materials. Ghanadpour M; Carosio F; Larsson PT; Wågberg L Biomacromolecules; 2015 Oct; 16(10):3399-410. PubMed ID: 26402379 [TBL] [Abstract][Full Text] [Related]
5. Flame-Retardant Paper from Wood Fibers Functionalized via Layer-by-Layer Assembly. Köklükaya O; Carosio F; Grunlan JC; Wågberg L ACS Appl Mater Interfaces; 2015 Oct; 7(42):23750-9. PubMed ID: 26457504 [TBL] [Abstract][Full Text] [Related]
6. All-natural and highly flame-resistant freeze-cast foams based on phosphorylated cellulose nanofibrils. Ghanadpour M; Wicklein B; Carosio F; Wågberg L Nanoscale; 2018 Feb; 10(8):4085-4095. PubMed ID: 29431818 [TBL] [Abstract][Full Text] [Related]
7. Enhanced flame-retardant properties of cellulose fibers by incorporation of acid-resistant magnesium-oxide microcapsules. Li X; Zhang K; Shi R; Ma X; Tan L; Ji Q; Xia Y Carbohydr Polym; 2017 Nov; 176():246-256. PubMed ID: 28927605 [TBL] [Abstract][Full Text] [Related]
8. Hierarchical Assembly of Nanocellulose-Based Filaments by Interfacial Complexation. Zhang K; Liimatainen H Small; 2018 Sep; 14(38):e1801937. PubMed ID: 30151995 [TBL] [Abstract][Full Text] [Related]
9. Hybrid films of chitosan, cellulose nanofibrils and boric acid: Flame retardancy, optical and thermo-mechanical properties. Uddin KMA; Ago M; Rojas OJ Carbohydr Polym; 2017 Dec; 177():13-21. PubMed ID: 28962751 [TBL] [Abstract][Full Text] [Related]
10. Flammability of Cellulose-Based Fibers and the Effect of Structure of Phosphorus Compounds on Their Flame Retardancy. Salmeia KA; Jovic M; Ragaisiene A; Rukuiziene Z; Milasius R; Mikucioniene D; Gaan S Polymers (Basel); 2016 Aug; 8(8):. PubMed ID: 30974570 [TBL] [Abstract][Full Text] [Related]
11. Engineering strong man-made cellulosic fibers: a review of the wet spinning process based on cellulose nanofibrils. Zhang Z; Kong Y; Gao J; Han X; Lian Z; Liu J; Wang WJ; Yang X Nanoscale; 2024 Mar; 16(13):6383-6401. PubMed ID: 38465763 [TBL] [Abstract][Full Text] [Related]
12. Eco-friendly Flame-Retardant Cellulose Nanofibril Aerogels by Incorporating Sodium Bicarbonate. Farooq M; Sipponen MH; Seppälä A; Österberg M ACS Appl Mater Interfaces; 2018 Aug; 10(32):27407-27415. PubMed ID: 30033716 [TBL] [Abstract][Full Text] [Related]
13. Silica-rich regenerated cellulose fibers enabled by delayed dissolution of silica nanoparticles in strong alkali using zinc oxide. Nechyporchuk O; Ulmefors H; Teleman A Carbohydr Polym; 2021 Jul; 264():118032. PubMed ID: 33910742 [TBL] [Abstract][Full Text] [Related]
14. Tuning the Nanoscale Properties of Phosphorylated Cellulose Nanofibril-Based Thin Films To Achieve Highly Fire-Protecting Coatings for Flammable Solid Materials. Ghanadpour M; Carosio F; Ruda MC; Wågberg L ACS Appl Mater Interfaces; 2018 Sep; 10(38):32543-32555. PubMed ID: 30148604 [TBL] [Abstract][Full Text] [Related]
15. Influence of Na Shi R; Tan L; Zong L; Ji Q; Li X; Zhang K; Cheng L; Xia Y Carbohydr Polym; 2017 Feb; 157():1594-1603. PubMed ID: 27987873 [TBL] [Abstract][Full Text] [Related]
16. Interfacial Polyelectrolyte Complex Spinning of Cellulose Nanofibrils for Advanced Bicomponent Fibers. Toivonen MS; Kurki-Suonio S; Wagermaier W; Hynninen V; Hietala S; Ikkala O Biomacromolecules; 2017 Apr; 18(4):1293-1301. PubMed ID: 28262019 [TBL] [Abstract][Full Text] [Related]
17. Directed self-assembly of silica nanoparticles in ionic liquid-spun cellulose fibers. Andersson Trojer M; Olsson C; Bengtsson J; Hedlund A; Bordes R J Colloid Interface Sci; 2019 Oct; 553():167-176. PubMed ID: 31202053 [TBL] [Abstract][Full Text] [Related]
18. Cotton-quality fibers from complexation between anionic and cationic cellulose nanoparticles. Jaekel EE; Torres GR; Antonietti M; Rojas OJ; Filonenko S Sci Rep; 2024 Aug; 14(1):18406. PubMed ID: 39117853 [TBL] [Abstract][Full Text] [Related]
19. Flame retardant vinylon/poly(m-phenylene isophthalamide) blended fibers with synergistic flame retardancy for advanced fireproof textiles. Zhang X; Shi M J Hazard Mater; 2019 Mar; 365():9-15. PubMed ID: 30399488 [TBL] [Abstract][Full Text] [Related]
20. Ultra-light-weight, anti-flammable and water-proof cellulosic aerogels for thermal insulation applications. Guo W; Chen S; Liang F; Jin L; Ji C; Zhang P; Fei B Int J Biol Macromol; 2023 Aug; 246():125343. PubMed ID: 37331534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]