These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 29028331)

  • 1. Ion-Induced Hydrogel Formation and Nematic Ordering of Nanocrystalline Cellulose Suspensions.
    Bertsch P; Isabettini S; Fischer P
    Biomacromolecules; 2017 Dec; 18(12):4060-4066. PubMed ID: 29028331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of nanocrystalline cellulose suspensions: Rheology, liquid crystal ordering and colloidal phase behaviour.
    Xu Y; Atrens A; Stokes JR
    Adv Colloid Interface Sci; 2020 Jan; 275():102076. PubMed ID: 31780045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheology and microstructure of aqueous suspensions of nanocrystalline cellulose rods.
    Xu Y; Atrens AD; Stokes JR
    J Colloid Interface Sci; 2017 Jun; 496():130-140. PubMed ID: 28214623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion-Induced Formation of Nanocrystalline Cellulose Colloidal Glasses Containing Nematic Domains.
    Bertsch P; Sánchez-Ferrer A; Bagnani M; Isabettini S; Kohlbrecher J; Mezzenga R; Fischer P
    Langmuir; 2019 Mar; 35(11):4117-4124. PubMed ID: 30810320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheology of nanocrystalline cellulose aqueous suspensions.
    Shafiei-Sabet S; Hamad WY; Hatzikiriakos SG
    Langmuir; 2012 Dec; 28(49):17124-33. PubMed ID: 23146090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheological properties of nanocrystalline cellulose suspensions.
    Chen Y; Xu C; Huang J; Wu D; Lv Q
    Carbohydr Polym; 2017 Feb; 157():303-310. PubMed ID: 27987931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersibility in water of dried nanocrystalline cellulose.
    Beck S; Bouchard J; Berry R
    Biomacromolecules; 2012 May; 13(5):1486-94. PubMed ID: 22482888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and rheology of liquid crystal hydroglass formed in aqueous nanocrystalline cellulose suspensions.
    Xu Y; Atrens A; Stokes JR
    J Colloid Interface Sci; 2019 Nov; 555():702-713. PubMed ID: 31416025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Liquid, gel and soft glass" phase transitions and rheology of nanocrystalline cellulose suspensions as a function of concentration and salinity.
    Xu Y; Atrens AD; Stokes JR
    Soft Matter; 2018 Mar; 14(10):1953-1963. PubMed ID: 29479584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the scaling law on gelation of oppositely charged nanocrystalline cellulose and polyelectrolyte.
    Lu A; Wang Y; Boluk Y
    Carbohydr Polym; 2014 May; 105():214-21. PubMed ID: 24708972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods.
    Boluk Y; Zhao L; Incani V
    Langmuir; 2012 Apr; 28(14):6114-23. PubMed ID: 22448630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion-Mediated Gelation of Aqueous Suspensions of Cellulose Nanocrystals.
    Chau M; Sriskandha SE; Pichugin D; Thérien-Aubin H; Nykypanchuk D; Chauve G; Méthot M; Bouchard J; Gang O; Kumacheva E
    Biomacromolecules; 2015 Aug; 16(8):2455-62. PubMed ID: 26102157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of counterion valency on the rheology of sulfonated cellulose nanocrystal hydrogels.
    Nyamayaro K; Mehrkhodavandi P; Hatzikiriakos SG
    Carbohydr Polym; 2023 Feb; 302():120378. PubMed ID: 36604056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of cationically modified nanocrystalline cellulose.
    Zaman M; Xiao H; Chibante F; Ni Y
    Carbohydr Polym; 2012 Jun; 89(1):163-70. PubMed ID: 24750619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheology of regenerated cellulose suspension and influence of sodium alginate.
    Jiang Y; De La Cruz JA; Ding L; Wang B; Feng X; Mao Z; Xu H; Sui X
    Int J Biol Macromol; 2020 Apr; 148():811-816. PubMed ID: 31962069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrolyte effect on gelation behavior of oppositely charged nanocrystalline cellulose and polyelectrolyte.
    Lu A; Song Y; Boluk Y
    Carbohydr Polym; 2014 Dec; 114():57-64. PubMed ID: 25263864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating the chiral nanoarchitecture of cellulose nanocrystals through interaction with salts and polymer.
    Lin M; Singh Raghuwanshi V; Browne C; Simon GP; Garnier G
    J Colloid Interface Sci; 2022 May; 613():207-217. PubMed ID: 35033766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The resilience of nanocrystalline cellulose viscosity to simulated digestive processes and its influence on glucose diffusion.
    Nsor-Atindana J; Douglas Goff H; Liu W; Chen M; Zhong F
    Carbohydr Polym; 2018 Nov; 200():436-445. PubMed ID: 30177185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of cellulose nanocrystals of different lengths.
    Raghuwanshi VS; Browne C; Batchelor W; Garnier G
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):249-259. PubMed ID: 36327727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tannin-immobilized cellulose hydrogel fabricated by a homogeneous reaction as a potential adsorbent for removing cationic organic dye from aqueous solution.
    Pei Y; Chu S; Chen Y; Li Z; Zhao J; Liu S; Wu X; Liu J; Zheng X; Tang K
    Int J Biol Macromol; 2017 Oct; 103():254-260. PubMed ID: 28526343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.