These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 29028505)
1. Characterization and cysteine sensing performance of nanocomposites based on up-conversion excitation host and rhodamine-derived probes. Yuqing Z; Yi X; Lihua L; Juanjuan M Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():134-142. PubMed ID: 29028505 [TBL] [Abstract][Full Text] [Related]
2. An optical sensing composite for cysteine detection using up-conversion nanoparticles and a rhodamine-derived chemosensor: Construction, characterization, photophysical feature and sensing performance. Kai S; Cheng-Wen L; Yi-Nan D; Tian L; Guang-Ye W; Jing-Mei L; Li-Quan G Spectrochim Acta A Mol Biomol Spectrosc; 2016 Feb; 155():81-7. PubMed ID: 26580512 [TBL] [Abstract][Full Text] [Related]
3. Cysteine optical sensing with an up-conversion host and two chemosensors derived from rhodamine: Construction, characterization and performance. Lin C; Zhigang F Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 174():195-202. PubMed ID: 27912179 [TBL] [Abstract][Full Text] [Related]
4. Hg(II)-activated emission "turn-on" chemosensors excited by up-conversion nanocrystals: synthesis, characterization and sensing performance. Li S; Zhao X; Tao D; Zhang W; Zhang K Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():581-8. PubMed ID: 25240830 [TBL] [Abstract][Full Text] [Related]
5. The synthesis and mercury-recognizing skill of two emission "turn-on" rhodamine derivatives excited by rare earth up-conversion lattice. Shen L; He Y; Yang X; Ma W Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():172-9. PubMed ID: 25064499 [TBL] [Abstract][Full Text] [Related]
6. Two rhodamine derived chemosensors excited by up-conversion lattice for cysteine detection: Synthesis, characterization and sensing behavior. Pu W; Lisha W; Li Z Spectrochim Acta A Mol Biomol Spectrosc; 2016 Apr; 159():223-30. PubMed ID: 26852112 [TBL] [Abstract][Full Text] [Related]
7. Hg(II) sensing platforms with improved photostability: The combination of rhodamine derived chemosensors and up-conversion nanocrystals. Song K; Mo J; Lu C Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 179():125-131. PubMed ID: 28237657 [TBL] [Abstract][Full Text] [Related]
8. Up-Converting Nanocrystals Modified With Fluorescent Markers for the Detection of Amino Acids: Preparation, Characterization, and Sensing Performance. Fei Y; Wu K; Liu L Front Chem; 2022; 10():859963. PubMed ID: 35386845 [TBL] [Abstract][Full Text] [Related]
9. Preparation, characterization and Hg(II)-sensing behavior of an up-conversion nanocomposite grafted by a rhodamine derived probe: a potential application for eco-industrial park. Dong-sheng Z; Da-shun Z; Hai-yan S; Zhang K Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():1062-7. PubMed ID: 24161869 [TBL] [Abstract][Full Text] [Related]
10. Multiple dye-doped silica cross-linked micellar nanoparticles for colour-tuneable sensing of cysteine in an aqueous media and living cells. Gai F; Li L; Yu Y; Han Z; Jin L; Ao Y; Liu Y; Huo Q J Colloid Interface Sci; 2018 Nov; 529():531-537. PubMed ID: 29957577 [TBL] [Abstract][Full Text] [Related]
11. Two new rhodamine-based fluorescent chemosensors for Fe3+ in aqueous solution. Liu Y; Xu Z; Wang J; Zhang D; Ye Y; Zhao Y Luminescence; 2014 Nov; 29(7):945-51. PubMed ID: 24700778 [TBL] [Abstract][Full Text] [Related]
12. A dansyl-rhodamine chemosensor for Fe(III) based on off-on FRET. Piao J; Lv J; Zhou X; Zhao T; Wu X Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():475-80. PubMed ID: 24682064 [TBL] [Abstract][Full Text] [Related]
13. Two 3-hydroxyflavone derivatives as two-photon fluorescence turn-on chemosensors for cysteine and homocysteine in living cells. Wu Q; Wang K; Wang Z; Sun Y; Cao D; Liu Z; Guan R; Zhao S; Yu X Talanta; 2018 May; 181():118-124. PubMed ID: 29426489 [TBL] [Abstract][Full Text] [Related]
14. Two rhodamine-azo based fluorescent probes for recognition of trivalent metal ions: crystal structure elucidation and biological applications. Mandal J; Pal K; Ghosh Chowdhury S; Karmakar P; Panja A; Banerjee S; Saha A Dalton Trans; 2022 Oct; 51(40):15555-15570. PubMed ID: 36168977 [TBL] [Abstract][Full Text] [Related]
15. A tricorn-rhodamine fluorescent chemosensor for detection of Co Li J; Han S Luminescence; 2017 Dec; 32(8):1448-1455. PubMed ID: 28590051 [TBL] [Abstract][Full Text] [Related]
16. Three colorimetric and off-on fluorescent chemosensors for Fe3+ in aqueous media. Chai M; Li M; Zhang D; Wang CC; Ye Y; Zhao Y Luminescence; 2013; 28(4):557-61. PubMed ID: 23460525 [TBL] [Abstract][Full Text] [Related]
17. For the optical detection of anthrax biomarker using a luminescent rare earth-organic framework modified by rhodamine molecules: Synthesis, characterization and two sensing channels. Li J; Wu Y; Yang C; Zhu R; Zhao K Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():397-403. PubMed ID: 29894951 [TBL] [Abstract][Full Text] [Related]
18. A ratiometric fluorescent chemosensor for the detection of cysteine in aqueous solution at neutral pH. Li Y Luminescence; 2017 Dec; 32(8):1385-1390. PubMed ID: 28516473 [TBL] [Abstract][Full Text] [Related]
19. A colormetric and fluorescent chemosensor for adenosine-5'-triphosphate based on rhodamine derivative. Li CY; Zou CX; Li YF; Kong XF; Zhou Y; Wu YS; Zhu WG Anal Chim Acta; 2013 Sep; 795():69-74. PubMed ID: 23998539 [TBL] [Abstract][Full Text] [Related]
20. A Study of Small Molecule-Based Rhodamine-Derived Chemosensors and their Implications in Environmental and Biological Systems from 2012 to 2021: Latest Advancement and Future Prospects. Lalitha R; Velmathi S J Fluoresc; 2024 Jan; 34(1):15-118. PubMed ID: 37212978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]