These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29028505)

  • 21. A Rhodamine-Benzimidazole Based Chemosensor for Fe(3+) and its Application in Living Cells.
    Li G; Tang J; Ding P; Ye Y
    J Fluoresc; 2016 Jan; 26(1):155-61. PubMed ID: 26518578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A metal-enhanced fluorescence sensing platform based on new mercapto rhodamine derivatives for reversible Hg(2+) detection.
    Cheng Z; Li G; Liu M
    J Hazard Mater; 2015 Apr; 287():402-11. PubMed ID: 25679802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and application of L-cysteine-modified CdSe/CdS core/shell nanocrystals as a novel fluorescence probe for detection of nucleic acid.
    Huang F; Chen G
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jul; 70(2):318-23. PubMed ID: 17954036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A flavone-based turn-on fluorescent probe for intracellular cysteine/homocysteine sensing with high selectivity.
    Zhang J; Lv Y; Zhang W; Ding H; Liu R; Zhao Y; Zhang G; Tian Z
    Talanta; 2016; 146():41-8. PubMed ID: 26695232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors.
    Zheng H; Zhan XQ; Bian QN; Zhang XJ
    Chem Commun (Camb); 2013 Jan; 49(5):429-47. PubMed ID: 23164947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel small stable gold nanoparticles bearing fluorescent cysteine-coumarin probes as new metal-modulated chemosensors.
    Oliveira E; Nuñez C; Rodríguez-González B; Capelo JL; Lodeiro C
    Inorg Chem; 2011 Sep; 50(18):8797-807. PubMed ID: 21848292
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A chemosensing ensemble for the detection of cysteine based on the inner filter effect using a rhodamine B spirolactam.
    Yang XF; Liu P; Wang L; Zhao M
    J Fluoresc; 2008 Mar; 18(2):453-9. PubMed ID: 18064543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spirolactone and spirothiolactone rhodamine-pyrene probes for detection of Hg²⁺ with different sensing properties and its application in living cells.
    Rui QQ; Zhou Y; Fang Y; Yao C
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Apr; 159():209-18. PubMed ID: 26851489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rhodamine-based chemosensing monolayers on glass as a facile fluorescent "turn-on" sensing film for selective detection of Pb2+.
    Ju H; Lee MH; Kim J; Kim JS; Kim J
    Talanta; 2011 Feb; 83(5):1359-63. PubMed ID: 21238721
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Naphthalimide appended rhodamine derivative: through bond energy transfer for sensing of Hg2+ ions.
    Kumar M; Kumar N; Bhalla V; Singh H; Sharma PR; Kaur T
    Org Lett; 2011 Mar; 13(6):1422-5. PubMed ID: 21323386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-branched triphenylamine-rhodamine derivatives: synthesis and fluorescent sensing for Cu2+ and Hg2+ ions.
    Yang Y; Li B; Zhang L; Li P; Jiang H
    Talanta; 2013 Oct; 115():938-42. PubMed ID: 24054685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rhodamine functionalized magnetic core-shell nanocomposite: an emission "Off-On" sensing system for mercury ion detection and extraction.
    Shen L; Wu Y; Ma W
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():348-56. PubMed ID: 25506652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thiophene-based rhodamine as selectivef luorescence probe for Fe(III) and Al(III) in living cells.
    Wang KP; Chen JP; Zhang SJ; Lei Y; Zhong H; Chen S; Zhou XH; Hu ZQ
    Anal Bioanal Chem; 2017 Sep; 409(23):5547-5554. PubMed ID: 28717898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of Novel Diketopyrrolopyrrole-Rhodamine Conjugates and Their Ability for Sensing Cu
    Queirós C; Almodôvar VAS; Martins F; Leite A; Tomé AC; Silva AMG
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36364042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two new isomerous fluorescent chemosensors for Al(3+) based on photoinduced electron transfer.
    Jiang XJ; Tang H; Li XY; Zang SQ; Hou HW; Mak TC
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():26-32. PubMed ID: 23831974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pyrazolone as a recognition site: Rhodamine 6G-based fluorescent probe for the selective recognition of Fe3+ in acetonitrile-aqueous solution.
    Parihar S; Boricha VP; Jadeja RN
    Luminescence; 2015 Mar; 30(2):168-74. PubMed ID: 24898853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two colorimetric fluorescent turn-on chemosensors for detection of Al
    Abebe F; Sutton T; Perkins P; Shaw R
    Luminescence; 2018 Nov; 33(7):1194-1201. PubMed ID: 30091286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Colorimetric and fluorescent chemosensor for citrate based on a rhodamine and Pb2+ complex in aqueous solution.
    Li CY; Zhou Y; Li YF; Kong XF; Zou CX; Weng C
    Anal Chim Acta; 2013 Apr; 774():79-84. PubMed ID: 23567120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and characterization of photoswitchable fluorescent SiO2 nanoparticles.
    May F; Peter M; Hütten A; Prodi L; Mattay J
    Chemistry; 2012 Jan; 18(3):814-21. PubMed ID: 22213584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calix[4]arene-based, Hg2+ -induced intramolecular fluorescence resonance energy transfer chemosensor.
    Othman AB; Lee JW; Wu JS; Kim JS; Abidi R; Thuéry P; Strub JM; Dorsselaer AV; Vicens J
    J Org Chem; 2007 Sep; 72(20):7634-40. PubMed ID: 17824650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.