These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 29028505)
41. Rhodamine-sugar based turn-on fluorescent probe for the detection of cysteine and homocysteine in water. Yang YK; Shim S; Tae J Chem Commun (Camb); 2010 Nov; 46(41):7766-8. PubMed ID: 20830360 [TBL] [Abstract][Full Text] [Related]
42. Reversible "off-on" fluorescent chemosensor for Hg2+ based on rhodamine derivative. Liu W; Chen J; Xu L; Wu J; Xu H; Zhang H; Wang P Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jan; 85(1):38-42. PubMed ID: 22018584 [TBL] [Abstract][Full Text] [Related]
43. A fluorescence ratiometric chemosensor for Fe³⁺ based on TBET and its application in living cells. Wang C; Zhang D; Huang X; Ding P; Wang Z; Zhao Y; Ye Y Talanta; 2014 Oct; 128():69-74. PubMed ID: 25059132 [TBL] [Abstract][Full Text] [Related]
44. Development of a new fluorescent probe for cysteine detection in processed food samples. Das S; Ghosh A; Kundu S; Saha S; Sarkar HS; Sahoo P Anal Bioanal Chem; 2019 Sep; 411(23):6203-6212. PubMed ID: 31300856 [TBL] [Abstract][Full Text] [Related]
45. NaYF4:Yb3+/Er3+ nanoparticle-based upconversion luminescence resonance energy transfer sensor for mercury(II) quantification. Li H; Wang L Analyst; 2013 Mar; 138(5):1589-95. PubMed ID: 23353928 [TBL] [Abstract][Full Text] [Related]
46. A highly selective fluorescent chemosensor for Cu Xue D; Zheng C; Qu S; Liao G; Fan C; Liu G; Pu S Luminescence; 2017 Jun; 32(4):652-660. PubMed ID: 28493379 [TBL] [Abstract][Full Text] [Related]
47. New fluorogenic sensors for Hg2+ ions: through-bond energy transfer from pentaquinone to rhodamine. Bhalla V; Roopa ; Kumar M; Sharma PR; Kaur T Inorg Chem; 2012 Feb; 51(4):2150-6. PubMed ID: 22300338 [TBL] [Abstract][Full Text] [Related]
48. A Recent Update on Rhodamine Dye Based Sensor Molecules: A Review. Sarkar S; Chatterjee A; Biswas K Crit Rev Anal Chem; 2024; 54(7):2351-2377. PubMed ID: 36705594 [TBL] [Abstract][Full Text] [Related]
49. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Kim HN; Lee MH; Kim HJ; Kim JS; Yoon J Chem Soc Rev; 2008 Aug; 37(8):1465-72. PubMed ID: 18648672 [TBL] [Abstract][Full Text] [Related]
50. Highly fluorescent rhodamine B nanoparticles entrapped in hybrid glasses. Gutiérrez MC; Hortigüela MJ; Ferrer ML; del Monte F Langmuir; 2007 Feb; 23(4):2175-9. PubMed ID: 17279710 [TBL] [Abstract][Full Text] [Related]
51. A new dual fluorogenic and chromogenic "turn-on" chemosensor for Cu²⁺/F⁻ ions. Yu H; Lee JY; Angupillai S; Wang S; Feng S; Matsumoto S; Son YA Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():48-55. PubMed ID: 26125982 [TBL] [Abstract][Full Text] [Related]
52. An azodye-rhodamine-based fluorescent and colorimetric probe specific for the detection of Pd(2+) in aqueous ethanolic solution: synthesis, XRD characterization, computational studies and imaging in live cells. Mahapatra AK; Manna SK; Maiti K; Mondal S; Maji R; Mandal D; Mandal S; Uddin MR; Goswami S; Quah CK; Fun HK Analyst; 2015 Feb; 140(4):1229-36. PubMed ID: 25537648 [TBL] [Abstract][Full Text] [Related]
53. Green synthesis of highly fluorescent Au(I)@Ag2/Ag3-thiolate core-shell particles for selective detection of cysteine and Pb(II). Ganguly M; Jana J; Mondal C; Pal A; Pal T Phys Chem Chem Phys; 2014 Sep; 16(34):18185-97. PubMed ID: 25052962 [TBL] [Abstract][Full Text] [Related]
54. Morphology-directing synthesis of rhodamine-based fluorophore microstructures and application toward extra- and intracellular detection of Hg(2+). Bhowmick R; Alam R; Mistri T; Bhattacharya D; Karmakar P; Ali M ACS Appl Mater Interfaces; 2015 Apr; 7(14):7476-85. PubMed ID: 25804993 [TBL] [Abstract][Full Text] [Related]
55. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer. Koide Y; Urano Y; Hanaoka K; Terai T; Nagano T ACS Chem Biol; 2011 Jun; 6(6):600-8. PubMed ID: 21375253 [TBL] [Abstract][Full Text] [Related]
56. Centrifugation aided highly sensitive detection of nitrite with a dye-silica conjugate featuring cleavable linkages. Xu H; Xue Z; Han J; Su X; Han S Bioorg Med Chem Lett; 2014 Oct; 24(20):4861-4. PubMed ID: 25227716 [TBL] [Abstract][Full Text] [Related]
57. Preparation of a new core-shell Ag@SiO2 nanocomposite and its application for fluorescence enhancement. Guo L; Guan A; Lin X; Zhang C; Chen G Talanta; 2010 Oct; 82(5):1696-700. PubMed ID: 20875565 [TBL] [Abstract][Full Text] [Related]
58. Target-triggered NIR emission with a large stokes shift for the detection and imaging of cysteine in living cells. Zhao C; Li X; Wang F Chem Asian J; 2014 Jul; 9(7):1777-81. PubMed ID: 24807291 [TBL] [Abstract][Full Text] [Related]
59. Highly selective and reversible chemosensor for Pd(2+) detected by fluorescence, colorimetry, and test paper. Wang M; Liu X; Lu H; Wang H; Qin Z ACS Appl Mater Interfaces; 2015 Jan; 7(2):1284-9. PubMed ID: 25529759 [TBL] [Abstract][Full Text] [Related]
60. Three rhodamine-based "off-on" chemosensors with high selectivity and sensitivity for Fe3+ imaging in living cells. Yang Z; She M; Yin B; Cui J; Zhang Y; Sun W; Li J; Shi Z J Org Chem; 2012 Jan; 77(2):1143-7. PubMed ID: 22176038 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]