BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29028597)

  • 1. A continuum model for tension-compression asymmetry in skeletal muscle.
    Latorre M; Mohammadkhah M; Simms CK; Montáns FJ
    J Mech Behav Biomed Mater; 2018 Jan; 77():455-460. PubMed ID: 29028597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The in vitro passive elastic response of chicken pectoralis muscle to applied tensile and compressive deformation.
    Mohammadkhah M; Murphy P; Simms CK
    J Mech Behav Biomed Mater; 2016 Sep; 62():468-480. PubMed ID: 27281164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression.
    Chahine NO; Wang CC; Hung CT; Ateshian GA
    J Biomech; 2004 Aug; 37(8):1251-61. PubMed ID: 15212931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen fibril organization in chicken and porcine skeletal muscle perimysium under applied tension and compression.
    Mohammadkhah M; Murphy P; Simms CK
    J Mech Behav Biomed Mater; 2018 Jan; 77():734-744. PubMed ID: 28803705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An inverse model of the mechanical response of passive skeletal muscle: Implications for microstructure.
    Valentin T; Simms C
    J Biomech; 2020 Jan; 99():109483. PubMed ID: 31727374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structural model of passive skeletal muscle shows two reinforcement processes in resisting deformation.
    Gindre J; Takaza M; Moerman KM; Simms CK
    J Mech Behav Biomed Mater; 2013 Jun; 22():84-94. PubMed ID: 23587721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of tension-compression asymmetry in Ogden hyperelasticity with application to soft tissue modelling.
    Moerman KM; Simms CK; Nagel T
    J Mech Behav Biomed Mater; 2016 Mar; 56():218-228. PubMed ID: 26719933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crucial role of periodontal ligament's Poisson's ratio and tension-compression asymmetric moduli on the evaluation of tooth displacement and stress state of periodontal ligament.
    Bi S; Shi G
    J Mech Behav Biomed Mater; 2023 Dec; 148():106217. PubMed ID: 37931551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On multiscale tension-compression asymmetry in skeletal muscle.
    Böl M; Kohn S; Leichsenring K; Morales-Orcajo E; Ehret AE
    Acta Biomater; 2022 May; 144():210-220. PubMed ID: 35339701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cryopreservation at -80°C on visco-hyperelastic properties of skeletal muscle tissue.
    Jalal N; Zidi M
    J Mech Behav Biomed Mater; 2018 Jan; 77():572-577. PubMed ID: 29096122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The anisotropic mechanical behaviour of passive skeletal muscle tissue subjected to large tensile strain.
    Takaza M; Moerman KM; Gindre J; Lyons G; Simms CK
    J Mech Behav Biomed Mater; 2013 Jan; 17():209-20. PubMed ID: 23127635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of viscoelasticity of collagen fibers in articular cartilage: axial tension versus compression.
    Li LP; Herzog W; Korhonen RK; Jurvelin JS
    Med Eng Phys; 2005 Jan; 27(1):51-7. PubMed ID: 15604004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poisson's ratio of bovine meniscus determined combining unconfined and confined compression.
    Danso EK; Julkunen P; Korhonen RK
    J Biomech; 2018 Aug; 77():233-237. PubMed ID: 30055840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental study of nonlinear rate-dependent behaviour of skeletal muscle to obtain passive mechanical properties.
    Hashemi SS; Asgari M; Rasoulian A
    Proc Inst Mech Eng H; 2020 Jun; 234(6):590-602. PubMed ID: 32133933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully non-linear hyper-viscoelastic modeling of skeletal muscle in compression.
    Wheatley BB; Pietsch RB; Haut Donahue TL; Williams LN
    Comput Methods Biomech Biomed Engin; 2016; 19(11):1181-9. PubMed ID: 26652761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive transverse mechanical properties of skeletal muscle under in vivo compression.
    Bosboom EM; Hesselink MK; Oomens CW; Bouten CV; Drost MR; Baaijens FP
    J Biomech; 2001 Oct; 34(10):1365-8. PubMed ID: 11522318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the microstructural response to applied deformation in porcine passive skeletal muscle.
    Takaza M; Cooney GM; McManus G; Stafford P; Simms CK
    J Mech Behav Biomed Mater; 2014 Dec; 40():115-126. PubMed ID: 25222870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation.
    Huang CY; Stankiewicz A; Ateshian GA; Mow VC
    J Biomech; 2005 Apr; 38(4):799-809. PubMed ID: 15713301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.