BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29028598)

  • 1. A particle swarm-based algorithm for optimization of multi-layered and graded dental ceramics.
    Askari E; Flores P; Silva F
    J Mech Behav Biomed Mater; 2018 Jan; 77():461-469. PubMed ID: 29028598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressed ceramics onto zirconia. Part 2: indentation fracture and influence of cooling rate on residual stresses.
    Choi JE; Waddell JN; Swain MV
    Dent Mater; 2011 Nov; 27(11):1111-8. PubMed ID: 21908034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of luting composite shrinkage and thermal loads on the stress distribution in porcelain laminate veneers.
    Magne P; Versluis A; Douglas WH
    J Prosthet Dent; 1999 Mar; 81(3):335-44. PubMed ID: 10050123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity analysis of bi-layered ceramic dental restorations.
    Zhang Z; Zhou S; Li Q; Li W; Swain MV
    Dent Mater; 2012 Feb; 28(2):e6-14. PubMed ID: 22169069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. THERMAL RESIDUAL STRESSES IN BILAYERED, TRILAYERED AND GRADED DENTAL CERAMICS.
    Fabris D; Souza JC; Silva FS; Fredel M; Mesquita-Guimarães J; Zhang Y; Henriques B
    Ceram Int; 2017 Mar; 43(4):3670-3678. PubMed ID: 28163345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.
    Wang G; Zhang S; Bian C; Kong H
    J Mech Behav Biomed Mater; 2014 Nov; 39():119-28. PubMed ID: 25123435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of interlayer design on residual thermal stresses in trilayered and graded all-ceramic restorations.
    Henriques B; Fabris D; Souza JCM; Silva FS; Mesquita-Guimarães J; Zhang Y; Fredel M
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1037-1045. PubMed ID: 27987657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residual thermal stress simulation in three-dimensional molar crown systems: a finite element analysis.
    Bonfante EA; Rafferty BT; Silva NR; Hanan JC; Rekow ED; Thompson VP; Coelho PG
    J Prosthodont; 2012 Oct; 21(7):529-34. PubMed ID: 22672470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of cooling rate on residual stress profile in veneering ceramic: measurement by hole-drilling.
    Mainjot AK; Schajer GS; Vanheusden AJ; Sadoun MJ
    Dent Mater; 2011 Sep; 27(9):906-14. PubMed ID: 21676454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic finite element evaluation of transient and residual stresses in dental crowns: Design parametric study.
    Dhital S; Rodrigues C; Zhang Y; Kim J
    J Mech Behav Biomed Mater; 2020 Mar; 103():103545. PubMed ID: 31760273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interdental design of porcelain veneers in the presence of composite fillings: finite element analysis of composite shrinkage and thermal stresses.
    Magne P; Douglas WH
    Int J Prosthodont; 2000; 13(2):117-24. PubMed ID: 11203619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bending strength of zirconia/porcelain functionally graded materials prepared using spark plasma sintering.
    Tsukada G; Sueyoshi H; Kamibayashi H; Tokuda M; Torii M
    J Dent; 2014 Dec; 42(12):1569-76. PubMed ID: 25280989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the interfacial fracture of porcelain/zirconia and graded zirconia dental structures.
    Chai H; Lee JJ; Mieleszko AJ; Chu SJ; Zhang Y
    Acta Biomater; 2014 Aug; 10(8):3756-61. PubMed ID: 24769152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of ceramic material, thickness of restoration and cement layer on stress distribution of occlusal veneers.
    Tribst JPM; Dal Piva AMO; Penteado MM; Borges ALS; Bottino MA
    Braz Oral Res; 2018 Nov; 32():e118. PubMed ID: 30517427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of residual stresses in zirconia veneered bilayers assessed via sharp and blunt indentation.
    Wendler M; Belli R; Petschelt A; Lohbauer U
    Dent Mater; 2015 Aug; 31(8):948-57. PubMed ID: 26037789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of various veneering techniques on mechanical strength of computer-controlled zirconia framework designs.
    Kanat B; Cömlekoğlu EM; Dündar-Çömlekoğlu M; Hakan Sen B; Ozcan M; Ali Güngör M
    J Prosthodont; 2014 Aug; 23(6):445-55. PubMed ID: 24417370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residual micro-stress distributions in heat-pressed ceramic on zirconia and porcelain-fused to metal systems: Analysis by FIB-DIC ring-core method and correlation with fracture toughness.
    Sebastiani M; Massimi F; Merlati G; Bemporad E
    Dent Mater; 2015 Nov; 31(11):1396-405. PubMed ID: 26365988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical and fracture behavior of veneer-framework composites for all-ceramic dental bridges.
    Studart AR; Filser F; Kocher P; Lüthy H; Gauckler LJ
    Dent Mater; 2007 Jan; 23(1):115-23. PubMed ID: 16473403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyses of multilayered dental ceramics subjected to biaxial flexure tests.
    Hsueh CH; Luttrell CR; Becher PF
    Dent Mater; 2006 May; 22(5):460-9. PubMed ID: 16099028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermally induced fracture for core-veneered dental ceramic structures.
    Zhang Z; Guazzato M; Sornsuwan T; Scherrer SS; Rungsiyakull C; Li W; Swain MV; Li Q
    Acta Biomater; 2013 Sep; 9(9):8394-402. PubMed ID: 23684764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.