These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 29028805)

  • 21. Intraindividual Increase of Homeostatic Sleep Pressure Across Acute and Chronic Sleep Loss: A High-Density EEG Study.
    Maric A; Lustenberger C; Werth E; Baumann CR; Poryazova R; Huber R
    Sleep; 2017 Sep; 40(9):. PubMed ID: 28934530
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TMS-induced cortical potentiation during wakefulness locally increases slow wave activity during sleep.
    Huber R; Esser SK; Ferrarelli F; Massimini M; Peterson MJ; Tononi G
    PLoS One; 2007 Mar; 2(3):e276. PubMed ID: 17342210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diurnal changes in glutamate + glutamine levels of healthy young adults assessed by proton magnetic resonance spectroscopy.
    Volk C; Jaramillo V; Merki R; O'Gorman Tuura R; Huber R
    Hum Brain Mapp; 2018 Oct; 39(10):3984-3992. PubMed ID: 29885049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sleep slow oscillations favour local cortical plasticity underlying the consolidation of reinforced procedural learning in human sleep.
    Menicucci D; Piarulli A; Laurino M; Zaccaro A; Agrimi J; Gemignani A
    J Sleep Res; 2020 Oct; 29(5):e13117. PubMed ID: 32592318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of sleep, wake activity and time-on-task on offline motor sequence learning.
    Landry S; Anderson C; Conduit R
    Neurobiol Learn Mem; 2016 Jan; 127():56-63. PubMed ID: 26655281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. EEG Σ and slow-wave activity during NREM sleep correlate with overnight declarative and procedural memory consolidation.
    Holz J; Piosczyk H; Feige B; Spiegelhalder K; Baglioni C; Riemann D; Nissen C
    J Sleep Res; 2012 Dec; 21(6):612-9. PubMed ID: 22591117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age-related changes in the circadian and homeostatic regulation of human sleep.
    Cajochen C; Münch M; Knoblauch V; Blatter K; Wirz-Justice A
    Chronobiol Int; 2006; 23(1-2):461-74. PubMed ID: 16687319
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Slow-wave sleep deficiency and enhancement: implications for insomnia and its management.
    Dijk DJ
    World J Biol Psychiatry; 2010 Jun; 11 Suppl 1():22-8. PubMed ID: 20509829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Slow wave activity and slow oscillations in sleepwalkers and controls: effects of 38 h of sleep deprivation.
    Perrault R; Carrier J; Desautels A; Montplaisir J; Zadra A
    J Sleep Res; 2013 Aug; 22(4):430-3. PubMed ID: 23398262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-density electroencephalographic recordings during sleep in children with disorders of consciousness.
    Mouthon AL; van Hedel HJA; Meyer-Heim A; Kurth S; Ringli M; Pugin F; Huber R
    Neuroimage Clin; 2016; 11():468-475. PubMed ID: 27104141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of morning training on night sleep: a behavioral and EEG study.
    Määttä S; Landsness E; Sarasso S; Ferrarelli F; Ferreri F; Ghilardi MF; Tononi G
    Brain Res Bull; 2010 Apr; 82(1-2):118-23. PubMed ID: 20105456
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cortical and subcortical EEG in relation to sleep-wake behavior in mammalian species.
    Lancel M
    Neuropsychobiology; 1993; 28(3):154-9. PubMed ID: 8278030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How do children fall asleep? A high-density EEG study of slow waves in the transition from wake to sleep.
    Spiess M; Bernardi G; Kurth S; Ringli M; Wehrle FM; Jenni OG; Huber R; Siclari F
    Neuroimage; 2018 Sep; 178():23-35. PubMed ID: 29758338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrophysiological traces of visuomotor learning and their renormalization after sleep.
    Landsness EC; Ferrarelli F; Sarasso S; Goldstein MR; Riedner BA; Cirelli C; Perfetti B; Moisello C; Ghilardi MF; Tononi G
    Clin Neurophysiol; 2011 Dec; 122(12):2418-25. PubMed ID: 21652261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-Density Electroencephalographic Recordings During Sleep in Children and Adolescents With Acquired Brain Injury.
    Mouthon AL; Meyer-Heim A; Kurth S; Ringli M; Pugin F; van Hedel HJA; Huber R
    Neurorehabil Neural Repair; 2017 May; 31(5):462-474. PubMed ID: 28162033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sleep-related cognitive function and the K-complex in schizophrenia.
    Ramakrishnan M; Sartory G; van Beekum A; Lohrmann T; Pietrowsky R
    Behav Brain Res; 2012 Oct; 234(2):161-6. PubMed ID: 22743003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strengthening sleep-autonomic interaction via acoustic enhancement of slow oscillations.
    Grimaldi D; Papalambros NA; Reid KJ; Abbott SM; Malkani RG; Gendy M; Iwanaszko M; Braun RI; Sanchez DJ; Paller KA; Zee PC
    Sleep; 2019 May; 42(5):. PubMed ID: 30753650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The slow-wave components of the cyclic alternating pattern (CAP) have a role in sleep-related learning processes.
    Ferri R; Huber R; Aricò D; Drago V; Rundo F; Ghilardi MF; Massimini M; Tononi G
    Neurosci Lett; 2008 Feb; 432(3):228-31. PubMed ID: 18248892
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of skilled training on sleep slow wave activity and cortical gene expression in the rat.
    Hanlon EC; Faraguna U; Vyazovskiy VV; Tononi G; Cirelli C
    Sleep; 2009 Jun; 32(6):719-29. PubMed ID: 19544747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cross-hemispheric Alternating Current Stimulation During a Nap Disrupts Slow Wave Activity and Associated Memory Consolidation.
    Garside P; Arizpe J; Lau CI; Goh C; Walsh V
    Brain Stimul; 2015; 8(3):520-7. PubMed ID: 25697588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.