BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 29028906)

  • 1. Critical assessment and performance improvement of plant-pathogen protein-protein interaction prediction methods.
    Yang S; Li H; He H; Zhou Y; Zhang Z
    Brief Bioinform; 2019 Jan; 20(1):274-287. PubMed ID: 29028906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting genome-scale Arabidopsis-Pseudomonas syringae interactome using domain and interolog-based approaches.
    Sahu SS; Weirick T; Kaundal R
    BMC Bioinformatics; 2014; 15 Suppl 11(Suppl 11):S13. PubMed ID: 25350354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of protein-protein interactions between Ralstonia solanacearum and Arabidopsis thaliana.
    Li ZG; He F; Zhang Z; Peng YL
    Amino Acids; 2012 Jun; 42(6):2363-71. PubMed ID: 21786137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network-Based Comparative Analysis of Arabidopsis Immune Responses to Golovinomyces orontii and Botrytis cinerea Infections.
    Jiang Z; Dong X; Zhang Z
    Sci Rep; 2016 Jan; 6():19149. PubMed ID: 26750561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine-Learning-Based Predictor of Human-Bacteria Protein-Protein Interactions by Incorporating Comprehensive Host-Network Properties.
    Lian X; Yang S; Li H; Fu C; Zhang Z
    J Proteome Res; 2019 May; 18(5):2195-2205. PubMed ID: 30983371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PlaPPISite: a comprehensive resource for plant protein-protein interaction sites.
    Yang X; Yang S; Qi H; Wang T; Li H; Zhang Z
    BMC Plant Biol; 2020 Feb; 20(1):61. PubMed ID: 32028878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stringent DDI-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.
    Zhou H; Rezaei J; Hugo W; Gao S; Jin J; Fan M; Yong CH; Wozniak M; Wong L
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S6. PubMed ID: 24564941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription Factors Involved in Plant Resistance to Pathogens.
    Amorim LLB; da Fonseca Dos Santos R; Neto JPB; Guida-Santos M; Crovella S; Benko-Iseppon AM
    Curr Protein Pept Sci; 2017; 18(4):335-351. PubMed ID: 27323805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of microRNA-regulated protein interaction pathways in Arabidopsis using machine learning algorithms.
    Kurubanjerdjit N; Huang CH; Lee YL; Tsai JJ; Ng KL
    Comput Biol Med; 2013 Nov; 43(11):1645-52. PubMed ID: 24209909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of human-virus protein-protein interactions through a sequence embedding-based machine learning method.
    Yang X; Yang S; Li Q; Wuchty S; Zhang Z
    Comput Struct Biotechnol J; 2020; 18():153-161. PubMed ID: 31969974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Protein-Protein Interactions via Random Ferns with Evolutionary Matrix Representation.
    Li Y; Wang Z; You ZH; Li LP; Hu X
    Comput Math Methods Med; 2022; 2022():7191684. PubMed ID: 35242211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant Elite Squad: First Defense Line and Resistance Genes - Identification, Diversity and Functional Roles.
    Wanderley-Nogueira AC; Bezerra-Neto JP; Kido EA; de Araujo FT; Amorim LLB; Crovella S; Benko-Iseppon AM
    Curr Protein Pept Sci; 2017; 18(4):294-310. PubMed ID: 27455974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning for phytopathology: from the molecular scale towards the network scale.
    Wang Y; Zhou M; Zou Q; Xu L
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33787847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide screening of phage-displayed libraries identifies immune targets in planta.
    Rioja C; Van Wees SC; Charlton KA; Pieterse CM; Lorenzo O; García-Sánchez S
    PLoS One; 2013; 8(1):e54654. PubMed ID: 23372747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TIR-only protein RBA1 recognizes a pathogen effector to regulate cell death in
    Nishimura MT; Anderson RG; Cherkis KA; Law TF; Liu QL; Machius M; Nimchuk ZL; Yang L; Chung EH; El Kasmi F; Hyunh M; Osborne Nishimura E; Sondek JE; Dangl JL
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):E2053-E2062. PubMed ID: 28137883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic evaluation of machine learning methods for identifying human-pathogen protein-protein interactions.
    Chen H; Li F; Wang L; Jin Y; Chi CH; Kurgan L; Song J; Shen J
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32459334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stringent homology-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.
    Zhou H; Gao S; Nguyen NN; Fan M; Jin J; Liu B; Zhao L; Xiong G; Tan M; Li S; Wong L
    Biol Direct; 2014 Apr; 9():5. PubMed ID: 24708540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Training host-pathogen protein-protein interaction predictors.
    Basit AH; Abbasi WA; Asif A; Gull S; Minhas FUAA
    J Bioinform Comput Biol; 2018 Aug; 16(4):1850014. PubMed ID: 30060698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting protein-protein interactions between human and hepatitis C virus via an ensemble learning method.
    Emamjomeh A; Goliaei B; Zahiri J; Ebrahimpour R
    Mol Biosyst; 2014 Dec; 10(12):3147-54. PubMed ID: 25230581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistance (R) Genes: Applications and Prospects for Plant Biotechnology and Breeding.
    Pandolfi V; Neto JRCF; da Silva MD; Amorim LLB; Wanderley-Nogueira AC; de Oliveira Silva RL; Kido EA; Crovella S; Iseppon AMB
    Curr Protein Pept Sci; 2017; 18(4):323-334. PubMed ID: 27455971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.