These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29028911)

  • 1. Genome-wide pre-miRNA discovery from few labeled examples.
    Yones C; Stegmayer G; Milone DH
    Bioinformatics; 2018 Feb; 34(4):541-549. PubMed ID: 29028911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Class-Imbalance in pre-miRNA Prediction: A Novel Approach Based on deepSOM.
    Stegmayer G; Yones C; Kamenetzky L; Milone DH
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1316-1326. PubMed ID: 27295687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide discovery of pre-miRNAs: comparison of recent approaches based on machine learning.
    Bugnon LA; Yones C; Milone DH; Stegmayer G
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High precision in microRNA prediction: A novel genome-wide approach with convolutional deep residual networks.
    Yones C; Raad J; Bugnon LA; Milone DH; Stegmayer G
    Comput Biol Med; 2021 Jul; 134():104448. PubMed ID: 33979731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting novel microRNA: a comprehensive comparison of machine learning approaches.
    Stegmayer G; Di Persia LE; Rubiolo M; Gerard M; Pividori M; Yones C; Bugnon LA; Rodriguez T; Raad J; Milone DH
    Brief Bioinform; 2019 Sep; 20(5):1607-1620. PubMed ID: 29800232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide hairpins datasets of animals and plants for novel miRNA prediction.
    Bugnon LA; Yones C; Raad J; Milone DH; Stegmayer G
    Data Brief; 2019 Aug; 25():104209. PubMed ID: 31453279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extreme learning machines for reverse engineering of gene regulatory networks from expression time series.
    Rubiolo M; Milone DH; Stegmayer G
    Bioinformatics; 2018 Apr; 34(7):1253-1260. PubMed ID: 29182723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complexity measures of the mature miRNA for improving pre-miRNAs prediction.
    Raad J; Stegmayer G; Milone DH
    Bioinformatics; 2020 Apr; 36(8):2319-2327. PubMed ID: 31860057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miRe2e: a full end-to-end deep model based on transformers for prediction of pre-miRNAs.
    Raad J; Bugnon LA; Milone DH; Stegmayer G
    Bioinformatics; 2022 Feb; 38(5):1191-1197. PubMed ID: 34875006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. miRNAfe: A comprehensive tool for feature extraction in microRNA prediction.
    Yones CA; Stegmayer G; Kamenetzky L; Milone DH
    Biosystems; 2015 Dec; 138():1-5. PubMed ID: 26499212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mirnacle: machine learning with SMOTE and random forest for improving selectivity in pre-miRNA ab initio prediction.
    Marques YB; de Paiva Oliveira A; Ribeiro Vasconcelos AT; Cerqueira FR
    BMC Bioinformatics; 2016 Dec; 17(Suppl 18):474. PubMed ID: 28105918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico miRNA prediction in metazoan genomes: balancing between sensitivity and specificity.
    van der Burgt A; Fiers MW; Nap JP; van Ham RC
    BMC Genomics; 2009 Apr; 10():204. PubMed ID: 19405940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Prediction of Novel miRNAs from Genome-Wide Data.
    Stegmayer G; Yones C; Kamenetzky L; Macchiaroli N; Milone DH
    Methods Mol Biol; 2017; 1654():29-37. PubMed ID: 28986781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mirinho: An efficient and general plant and animal pre-miRNA predictor for genomic and deep sequencing data.
    Higashi S; Fournier C; Gautier C; Gaspin C; Sagot MF
    BMC Bioinformatics; 2015 May; 16():179. PubMed ID: 26022464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans.
    Huang TH; Fan B; Rothschild MF; Hu ZL; Li K; Zhao SH
    BMC Bioinformatics; 2007 Sep; 8():341. PubMed ID: 17868480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of microRNA targets in Caenorhabditis elegans using a self-organizing map.
    Heikkinen L; Kolehmainen M; Wong G
    Bioinformatics; 2011 May; 27(9):1247-54. PubMed ID: 21422073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. microRPM: a microRNA prediction model based only on plant small RNA sequencing data.
    Tseng KC; Chiang-Hsieh YF; Pai H; Chow CN; Lee SC; Zheng HQ; Kuo PL; Li GZ; Hung YC; Lin NS; Chang WC
    Bioinformatics; 2018 Apr; 34(7):1108-1115. PubMed ID: 29136092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A semi-supervised machine learning framework for microRNA classification.
    Sheikh Hassani M; Green JR
    Hum Genomics; 2019 Oct; 13(Suppl 1):43. PubMed ID: 31639051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of measures distinguishes pre-miRNAs from other stem-loops in the genome of the newly sequenced Anopheles darlingi.
    Mendes ND; Freitas AT; Vasconcelos AT; Sagot MF
    BMC Genomics; 2010 Sep; 11():529. PubMed ID: 20920257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Supervised and Unsupervised Learning for Improved miRNA Target Prediction.
    Sedaghat N; Fathy M; Modarressi MH; Shojaie A
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1594-1604. PubMed ID: 28715336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.