These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29028922)

  • 1. Methods for handling longitudinal outcome processes truncated by dropout and death.
    Wen L; Terrera GM; Seaman SR
    Biostatistics; 2018 Oct; 19(4):407-425. PubMed ID: 29028922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the use of multiple imputation to address data missing by design as well as unintended missing data in case-cohort studies with a binary endpoint.
    Middleton M; Nguyen C; Carlin JB; Moreno-Betancur M; Lee KJ
    BMC Med Res Methodol; 2023 Dec; 23(1):287. PubMed ID: 38062377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study.
    Tran L; Yiannoutsos C; Wools-Kaloustian K; Siika A; van der Laan M; Petersen M
    Int J Biostat; 2019 Feb; 15(2):. PubMed ID: 30811344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical results in longitudinal studies depended on target of inference and assumed mechanism of attrition.
    Jones M; Mishra GD; Dobson A
    J Clin Epidemiol; 2015 Oct; 68(10):1165-75. PubMed ID: 25920943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-parametric methods of handling missing data in mortal cohorts under non-ignorable missingness.
    Wen L; Seaman SR
    Biometrics; 2018 Dec; 74(4):1427-1437. PubMed ID: 29772074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of inverse probability weighting for dealing with missing data.
    Seaman SR; White IR
    Stat Methods Med Res; 2013 Jun; 22(3):278-95. PubMed ID: 21220355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining multiple imputation and inverse-probability weighting.
    Seaman SR; White IR; Copas AJ; Li L
    Biometrics; 2012 Mar; 68(1):129-37. PubMed ID: 22050039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of predictive model performance of an existing model in the presence of missing data.
    Li P; Taylor JMG; Spratt DE; Karnes RJ; Schipper MJ
    Stat Med; 2021 Jul; 40(15):3477-3498. PubMed ID: 33843085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of multiple imputation approaches for handling missing covariate information in a case-cohort study with a binary outcome.
    Middleton M; Nguyen C; Moreno-Betancur M; Carlin JB; Lee KJ
    BMC Med Res Methodol; 2022 Apr; 22(1):87. PubMed ID: 35369860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Missing data and prediction: the pattern submodel.
    Fletcher Mercaldo S; Blume JD
    Biostatistics; 2020 Apr; 21(2):236-252. PubMed ID: 30203058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear Increments with Non-monotone Missing Data and Measurement Error.
    Seaman SR; Farewell D; White IR
    Scand Stat Theory Appl; 2016 Dec; 43(4):996-1018. PubMed ID: 27867251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doubly robust estimation and causal inference in longitudinal studies with dropout and truncation by death.
    Shardell M; Hicks GE; Ferrucci L
    Biostatistics; 2015 Jan; 16(1):155-68. PubMed ID: 24997309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introduction to Double Robust Methods for Incomplete Data.
    Seaman SR; Vansteelandt S
    Stat Sci; 2018; 33(2):184-197. PubMed ID: 29731541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Missing confounding data in marginal structural models: a comparison of inverse probability weighting and multiple imputation.
    Moodie EE; Delaney JA; Lefebvre G; Platt RW
    Int J Biostat; 2008; 4(1):Article 13. PubMed ID: 22462119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving upon the efficiency of complete case analysis when covariates are MNAR.
    Bartlett JW; Carpenter JR; Tilling K; Vansteelandt S
    Biostatistics; 2014 Oct; 15(4):719-30. PubMed ID: 24907708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Missing Data in Marginal Structural Models: A Plasmode Simulation Study Comparing Multiple Imputation and Inverse Probability Weighting.
    Liu SH; Chrysanthopoulou SA; Chang Q; Hunnicutt JN; Lapane KL
    Med Care; 2019 Mar; 57(3):237-243. PubMed ID: 30664611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accounting for missing data in statistical analyses: multiple imputation is not always the answer.
    Hughes RA; Heron J; Sterne JAC; Tilling K
    Int J Epidemiol; 2019 Aug; 48(4):1294-1304. PubMed ID: 30879056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple imputation for handling missing outcome data when estimating the relative risk.
    Sullivan TR; Lee KJ; Ryan P; Salter AB
    BMC Med Res Methodol; 2017 Sep; 17(1):134. PubMed ID: 28877666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between inverse-probability weighting and multiple imputation in Cox model with missing failure subtype.
    Guo F; Langworthy B; Ogino S; Wang M
    Stat Methods Med Res; 2024 Feb; 33(2):344-356. PubMed ID: 38262434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.