These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 29029230)
1. Microbial organic acid production as carbon dioxide sink. Steiger MG; Mattanovich D; Sauer M FEMS Microbiol Lett; 2017 Nov; 364(21):. PubMed ID: 29029230 [TBL] [Abstract][Full Text] [Related]
2. Yeast metabolic engineering for carbon dioxide fixation and its application. Rin Kim S; Kim SJ; Kim SK; Seo SO; Park S; Shin J; Kim JS; Park BR; Jin YS; Chang PS; Park YC Bioresour Technol; 2022 Feb; 346():126349. PubMed ID: 34800639 [TBL] [Abstract][Full Text] [Related]
3. Requirement of carbon dioxide for initial growth of facultative methylotroph, Acidomonas methanolica MB58. Mitsui R; Katayama H; Tanaka M J Biosci Bioeng; 2015 Jul; 120(1):31-5. PubMed ID: 25511787 [TBL] [Abstract][Full Text] [Related]
4. The single-process biochemical reaction of Rubisco: a unified theory and model with the effects of irradiance, CO₂ and rate-limiting step on the kinetics of C₃ and C₄ photosynthesis from gas exchange. Farazdaghi H Biosystems; 2011 Feb; 103(2):265-84. PubMed ID: 21093535 [TBL] [Abstract][Full Text] [Related]
5. [Theoretical evaluation of necessity of carbon dioxide assimilation by microorganisms during growth on various substrates]. Malashenko IuR; Romanovskaia VA; Sokolov IG; Kryshtab TP; Liudvichenko ES Ukr Biokhim Zh (1978); 1980; 52(2):159-63. PubMed ID: 6770514 [TBL] [Abstract][Full Text] [Related]
6. Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris. Guzman MS; Rengasamy K; Binkley MM; Jones C; Ranaivoarisoa TO; Singh R; Fike DA; Meacham JM; Bose A Nat Commun; 2019 Mar; 10(1):1355. PubMed ID: 30902976 [TBL] [Abstract][Full Text] [Related]
7. Optimization of CO₂fixation in photosynthetic cells via thermodynamic buffering. Igamberdiev AU; Kleczkowski LA Biosystems; 2011 Feb; 103(2):224-9. PubMed ID: 20933572 [TBL] [Abstract][Full Text] [Related]
9. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Schwender J; Goffman F; Ohlrogge JB; Shachar-Hill Y Nature; 2004 Dec; 432(7018):779-82. PubMed ID: 15592419 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic feasibility of enzymatic reduction of carbon dioxide to methanol. Baskaya FS; Zhao X; Flickinger MC; Wang P Appl Biochem Biotechnol; 2010 Sep; 162(2):391-8. PubMed ID: 19763899 [TBL] [Abstract][Full Text] [Related]
11. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. Badger MR; Bek EJ J Exp Bot; 2008; 59(7):1525-41. PubMed ID: 18245799 [TBL] [Abstract][Full Text] [Related]
12. Rubisco-based engineered Escherichia coli for in situ carbon dioxide recycling. Zhuang ZY; Li SY Bioresour Technol; 2013 Dec; 150():79-88. PubMed ID: 24152790 [TBL] [Abstract][Full Text] [Related]
13. Design and in vitro realization of carbon-conserving photorespiration. Trudeau DL; Edlich-Muth C; Zarzycki J; Scheffen M; Goldsmith M; Khersonsky O; Avizemer Z; Fleishman SJ; Cotton CAR; Erb TJ; Tawfik DS; Bar-Even A Proc Natl Acad Sci U S A; 2018 Dec; 115(49):E11455-E11464. PubMed ID: 30459276 [TBL] [Abstract][Full Text] [Related]
14. Carbon recycling by cyanobacteria: improving CO2 fixation through chemical production. Zhang A; Carroll AL; Atsumi S FEMS Microbiol Lett; 2017 Sep; 364(16):. PubMed ID: 28873946 [TBL] [Abstract][Full Text] [Related]
15. Soil Carbon-Fixation Rates and Associated Bacterial Diversity and Abundance in Three Natural Ecosystems. Lynn TM; Ge T; Yuan H; Wei X; Wu X; Xiao K; Kumaresan D; Yu SS; Wu J; Whiteley AS Microb Ecol; 2017 Apr; 73(3):645-657. PubMed ID: 27838764 [TBL] [Abstract][Full Text] [Related]
16. [Activity of the enzymes of carbon metabolism in Sulfobacillus sibiricus under various conditions of cultivation]. Zakharchuk LM; Egorova MA; Tsaplina IA; Bogdanova TI; Krasil'nikova EN; Melamud VS; Karavaĭko GI Mikrobiologiia; 2003; 72(5):621-6. PubMed ID: 14679899 [TBL] [Abstract][Full Text] [Related]
17. Current views on the regulation of autotrophic carbon dioxide fixation via the Calvin cycle in bacteria. Dijkhuizen L; Harder W Antonie Van Leeuwenhoek; 1984; 50(5-6):473-87. PubMed ID: 6099093 [TBL] [Abstract][Full Text] [Related]
18. The effect of lactic acid on anaerobic carbon or nitrogen limited chemostat cultures of Saccharomyces cerevisiae. Thomsson E; Larsson C Appl Microbiol Biotechnol; 2006 Jul; 71(4):533-42. PubMed ID: 16317544 [TBL] [Abstract][Full Text] [Related]
19. The regulatory interplay between photorespiration and photosynthesis. Timm S; Florian A; Fernie AR; Bauwe H J Exp Bot; 2016 May; 67(10):2923-9. PubMed ID: 26969745 [TBL] [Abstract][Full Text] [Related]
20. Feedforward non-Michaelis-Menten mechanism for CO(2) uptake by Rubisco: contribution of carbonic anhydrases and photorespiration to optimization of photosynthetic carbon assimilation. Igamberdiev AU; Roussel MR Biosystems; 2012 Mar; 107(3):158-66. PubMed ID: 22154946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]